Three-dimensional bioprinting for bone tissue regeneration

被引:47
|
作者
Adepu, Shivakalyani [1 ]
Dhiman, Nandini [2 ]
Laha, Anindita [3 ]
Sharma, Chandra S. [4 ]
Ramakrishna, Seeram [5 ]
Khandelwal, Mudrika [1 ]
机构
[1] Indian Inst Technol, Dept Mat Sci & Met Engn, Nat & Nat Inspired Mat Soc Lab, Hyderabad 502285, India
[2] Indian Inst Technol, Dept Biomed Engn, Hyderabad 502285, India
[3] Indian Inst Technol, Dept Chem Engn, Hyderabad 502285, India
[4] Indian Inst Technol, Dept Chem Engn, Creat & Adv Res Based Nanomat Lab, Hyderabad 502285, India
[5] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
关键词
Bioink; Growth factors; Controlled release; Angiogenesis; Osteogenesis; 3D; CONSTRUCTS; DELIVERY; SCAFFOLDS; HYDROGEL;
D O I
10.1016/j.cobme.2017.03.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three-dimensional bioprinting can prove to be a promising technology for bone tissue regeneration as it facilitates good spatio-temporal distribution of cells in scaffold. The feed for bio-printing is bioink, which comprises of cells incorporated in the scaffold material. Progress has been made on the incorporation of growth factors in the bioink, which not only enables efficient regeneration but at the same time proves the feasibility of large constructs. Important parameters which determine the suitability of bioink have been discussed here. Lack of vascularization limits the success of this technology in its present form. Advances in inducing vascularization and growth factors have also been discussed. Towards the end, challenges and opinions in the area of bioprinting of bone tissue regeneration have been presented.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 50 条
  • [1] Three-dimensional bioprinting vascularized bone tissue
    Hadis Gharacheh
    Murat Guvendiren
    MRS Bulletin, 2023, 48 : 668 - 675
  • [2] Three-dimensional bioprinting vascularized bone tissue
    Gharacheh, Hadis
    Guvendiren, Murat
    MRS BULLETIN, 2023, 48 (06) : 668 - 675
  • [3] Three-Dimensional Bioprinting Applications for Bone Tissue Engineering
    Maresca, Jamie A. A.
    DeMel, Derek C. C.
    Wagner, Grayson A. A.
    Haase, Colin
    Geibel, John P. P.
    CELLS, 2023, 12 (09)
  • [4] Three-Dimensional Bioprinting, Oxygenated Tissue Constructs, and Intravital Tissue Regeneration
    Ashammakhi, Nureddin
    Tamimi, Faleh
    Caterson, Edward J.
    JOURNAL OF CRANIOFACIAL SURGERY, 2021, 32 (07) : 2257 - 2258
  • [5] Three-dimensional cell-based bioprinting for soft tissue regeneration
    Ji Hyun Kim
    James J. Yoo
    Sang Jin Lee
    Tissue Engineering and Regenerative Medicine, 2016, 13 : 647 - 662
  • [6] Three-dimensional cell-based bioprinting for soft tissue regeneration
    Kim, Ji Hyun
    Yoo, James J.
    Lee, Sang Jin
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 13 (06) : 647 - 662
  • [7] Three-Dimensional Bioprinting Strategies for Tissue Engineering
    Zhang, Yu Shrike
    Oklu, Rahmi
    Dokmeci, Mehmet Remzi
    Khademhosseini, Ali
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2018, 8 (02):
  • [8] Three-Dimensional Bioprinting Can Help Bone
    Ashammakhi, Nureddin
    Kaarela, Outi
    JOURNAL OF CRANIOFACIAL SURGERY, 2018, 29 (01) : 9 - 11
  • [9] Three-dimensional tissue constructs built by bioprinting
    Jakab, Karoly
    Damon, Brook
    Neagu, Adrian
    Kachurin, Anatolij
    Forgacs, Gabor
    BIORHEOLOGY, 2006, 43 (3-4) : 509 - 513
  • [10] Biomechanical factors in three-dimensional tissue bioprinting
    Ning, Liqun
    Gil, Carmen J.
    Hwang, Boeun
    Theus, Andrea S.
    Perez, Lilanni
    Tomov, Martin L.
    Bauser-Heaton, Holly
    Serpooshan, Vahid
    APPLIED PHYSICS REVIEWS, 2020, 7 (04):