Low-Resolution Face Recognition

被引:26
|
作者
Cheng, Zhiyi [1 ]
Zhu, Xiatian [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
[2] Vis Semant Ltd, London, England
来源
基金
“创新英国”项目;
关键词
Face recognition; Low-resolution; Super-resolution; SUPERRESOLUTION;
D O I
10.1007/978-3-030-20893-6_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whilst recent face-recognition (FR) techniques have made significant progress on recognising constrained high-resolution web images, the same cannot be said on natively unconstrained low-resolution images at large scales. In this work, we examine systematically this under-studied FR problem, and introduce a novel Complement Super-Resolution and Identity (CSRI) joint deep learning method with a unified end-to-end network architecture. We further construct a new large-scale dataset TinyFace of native unconstrained low-resolution face images from selected public datasets, because none benchmark of this nature exists in the literature. With extensive experiments we show there is a significant gap between the reported FR performances on popular benchmarks and the results on TinyFace, and the advantages of the proposed CSRI over a variety of state-of-the-art FR and super-resolution deep models on solving this largely ignored FR scenario. The TinyFace dataset is released publicly at: https://qmul-tinyface.github.io/.
引用
收藏
页码:605 / 621
页数:17
相关论文
共 50 条
  • [1] Low-resolution face recognition: a review
    Zhifei Wang
    Zhenjiang Miao
    Q. M. Jonathan Wu
    Yanli Wan
    Zhen Tang
    The Visual Computer, 2014, 30 : 359 - 386
  • [2] Low-resolution face recognition: a review
    Wang, Zhifei
    Miao, Zhenjiang
    Wu, Q. M. Jonathan
    Wan, Yanli
    Tang, Zhen
    VISUAL COMPUTER, 2014, 30 (04): : 359 - 386
  • [3] Dissimilarity Representations for Low-Resolution Face Recognition
    Hernandez-Duran, Mairelys
    Cheplygina, Veronika
    Plasencia-Calana, Yenisel
    SIMILARITY-BASED PATTERN RECOGNITION, SIMBAD 2015, 2015, 9370 : 70 - 83
  • [4] Unsupervised Face Domain Transfer for Low-Resolution Face Recognition
    Hong, Sungeun
    Ryu, Jongbin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 156 - 160
  • [5] Discriminative Multidimensional Scaling for Low-Resolution Face Recognition
    Yang, Fuwei
    Yang, Wenming
    Gao, Riqiang
    Liao, Qingmin
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 388 - 392
  • [6] CCFace: Classification Consistency for Low-Resolution Face Recognition
    Saadabadi, Mohammad Saeed Ebrahimi
    Malakshan, Sahar Rahimi
    Kashiani, Hossein
    Nasrabadi, Nasser M.
    2023 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS, IJCB, 2023,
  • [7] Dictionary Alignment for Low-Resolution and Heterogeneous Face Recognition
    Mudunuri, Sivaram Prasad
    Biswas, Soma
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1115 - 1123
  • [8] Low-resolution face recognition and the importance of proper alignment
    Peng, Yuxi
    Spreeuwers, Luuk J.
    Veldhuis, Raymond N. J.
    IET BIOMETRICS, 2019, 8 (04) : 267 - 276
  • [9] Deep Coupled ResNet for Low-Resolution Face Recognition
    Lu, Ze
    Jiang, Xudong
    Kot, Alex
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (04) : 526 - 530
  • [10] Lightweight Low-Resolution Face Recognition for Surveillance Applications
    Martinez-Diaz, Yoanna
    Mendez-Vazquez, Heydi
    Luevano, Luis S.
    Chang, Leonardo
    Gonzalez-Mendoza, Miguel
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5421 - 5428