Novel hermetically sealed device to realize unconventional phonon blockade at near-micron dimensions and milliKelvin temperatures
被引:3
|
作者:
Nema, Jayant K.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
Nema, Jayant K.
[1
,2
]
Gupta, Srijan
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
Gupta, Srijan
[3
]
Thakkar, Riya
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
Thakkar, Riya
[3
]
Rajagopal, Prabhu
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
Rajagopal, Prabhu
[1
,2
]
机构:
[1] Indian Inst Technol Madras, Ctr Nondestruct Evaluat, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
[3] Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, India
This paper proposes a novel design for a hermetically sealable device, consisting of charged linear and nonlinear membranes driven in the gigahertz range in vacuum setting, as a source of antibunched single phonons. Constraints for effecting phonon antibunching are found using the stationary Liouville-von Neumann master equation. Using analytical calculations and material and geometry optimization, we show that sizes of the proposed system can be upscaled to the near-micrometer range in a trade-off with the system operating temperature. The results are significant to realize quantum phononics, which has much promise as a modality for sensing and computing applications.