Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery

被引:21
|
作者
Dutta, Kingshuk [1 ]
Das, Ritam [1 ,2 ]
Medeiros, Jewel [1 ,2 ]
Thayumanavan, S. [3 ,4 ]
机构
[1] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[2] Univ Massachusetts, Ctr Bioact Delivery, Inst Appl Life Sci, Amherst, MA 01003 USA
[3] Univ Massachusetts, Dept Chem, Ctr Bioact Delivery, Inst Appl Life Sci,Dept Biomed Engn, Amherst, MA 01003 USA
[4] Univ Massachusetts, Mol & Cellular Biol Program, Amherst, MA 01003 USA
基金
美国国家卫生研究院;
关键词
MESOPOROUS SILICA NANOPARTICLES; BIOREDUCIBLE POLY(AMIDO AMINE)S; CELL-PENETRATING PEPTIDES; MOLECULAR-WEIGHT POLYETHYLENIMINE; EFFICIENT GENE-TRANSFER; VIRUS-LIKE PARTICLES; IN-VITRO; INTRACELLULAR DELIVERY; PLASMID DNA; ANTISENSE OLIGONUCLEOTIDES;
D O I
10.1021/acs.biochem.0c00860
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
引用
收藏
页码:966 / 990
页数:25
相关论文
共 50 条
  • [1] Mechanism of nonviral nucleic acid and gene delivery
    Wagner, Emst
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2008, 34 (01) : S20 - S20
  • [2] Nonviral Approach for Targeted Nucleic Acid Delivery
    Jafari, M.
    Soltani, M.
    Naahidi, S.
    Karunaratne, D. N.
    Chen, P.
    [J]. CURRENT MEDICINAL CHEMISTRY, 2012, 19 (02) : 197 - 208
  • [3] Carbohydrate Polymers for Nonviral Nucleic Acid Delivery
    Sizovs, Antons
    McLendon, Patrick M.
    Srinivasachari, Sathya
    Reineke, Theresa M.
    [J]. NUCLEIC ACID TRANSFECTION, 2010, 296 : 131 - 190
  • [4] Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery
    Sunshine, Joel C.
    Bishop, Corey J.
    Green, Jordan J.
    [J]. THERAPEUTIC DELIVERY, 2011, 2 (04) : 493 - 521
  • [5] Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System
    Tan, James-Kevin Y.
    Sellers, Drew L.
    Pham, Binhan
    Pun, Suzie H.
    Horner, Philip J.
    [J]. FRONTIERS IN MOLECULAR NEUROSCIENCE, 2016, 9
  • [6] Bioinspired peptides as versatile nucleic acid delivery platforms
    Gopal, Vijaya
    [J]. JOURNAL OF CONTROLLED RELEASE, 2013, 167 (03) : 323 - 332
  • [7] Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications
    Hamann, Andrew
    Nguyen, Albert
    Pannier, Angela K.
    [J]. JOURNAL OF BIOLOGICAL ENGINEERING, 2019, 13 (1)
  • [8] Nonviral approaches for neuronal delivery of nucleic acids
    Bergen, Jamie M.
    Park, In-Kyu
    Horner, Philip J.
    Pun, Suzie H.
    [J]. PHARMACEUTICAL RESEARCH, 2008, 25 (05) : 983 - 998
  • [9] Nucleic acid delivery to fibroblasts using nonviral vectors associated with magnetic nanoparticles
    Bartosz, Grzeskowiak
    Olga, Mykhaylyk
    Christian, Plank
    Ryszard, Slomski
    [J]. HUMAN GENE THERAPY, 2012, 23 (10) : A140 - A140
  • [10] Nonviral Platforms Streamline Gene Therapy Delivery
    Knutsen A.
    [J]. Genetic Engineering and Biotechnology News, 2023, 43 (09): : 22 - 25