INTRINSIC SCHREIER SPECIAL OBJECTS

被引:0
|
作者
Montoli, Andrea [1 ]
Rodelo, Diana [2 ,3 ]
van der Linden, Tim [4 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Algarve, Fac Ciencias & Tecnol, Dept Matemat, Campus Gambelas, P-8005139 Faro, Portugal
[3] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
[4] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-02, B-1348 Louvain La Neuve, Belgium
来源
关键词
Imaginary morphism; approximate operation; regular; unital; protomodular category; monoid; 2-Engel group; Lie algebra; Jensson-Tarski variety; SEMIDIRECT PRODUCTS; MONOIDS; MALTSEV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the categorical-algebraic analysis of split epimorphisms of monoids, we study the concept of a special object induced by the intrinsic Schreier split epimorphisms in the context of a regular unital category with binary coproducts, comonadic covers and a natural imaginary splitting in the sense of our article [21]. In this context, each object comes naturally equipped with an imaginary magma structure. We analyse the intrinsic Schreier split epimorphisms in this setting, showing that their properties improve when the imaginary magma structures happen to be associative. We compare the intrinsic Schreier special objects with the protomodular objects, and characterise them in terms of the imaginary magma structure. We furthermore relate them to the Engel property in the case of groups and Lie algebras.
引用
收藏
页码:514 / 555
页数:42
相关论文
共 50 条