Multiplication between Hardy spaces and their dual spaces

被引:22
|
作者
Bonami, Aline [1 ]
Cao, Jun [2 ]
Ky, Luong Dang [3 ]
Liu, Liguang [4 ]
Yang, Dachun [5 ]
Yuan, Wen [5 ]
机构
[1] Univ Orleans, Inst Denis Poisson, UMR CNRS 7013, F-45067 Orleans 2, France
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[3] Univ Quy Nhon, Dept Math, 170 Duong Vuong, Quy Nhon, Binh Dinh, Vietnam
[4] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[5] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear decomposition; Div-curl product; Hardy space; Campanato space; Musielak-Orlicz Hardy space; Pointwise multiplier; WAVELET CHARACTERIZATION; PRODUCTS; BMO; DECOMPOSITIONS; DETERMINANTS; LIPSCHITZ;
D O I
10.1016/j.matpur.2019.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any p is an element of (0, 1) and alpha = 1/p - 1, let H-p(R-n) and C-alpha (R-n) be the Hardy and the Campanato spaces on the R-n-dimensional Euclidean space R-n, respectively. In this article, the authors find suitable Musielak-Orlicz functions Phi(p), defined by setting, for any x is an element of R-n and t is an element of [0, infinity), Phi(p)(x, t) := {t/1+[t(1+vertical bar x vertical bar)(n)](1-p) when n(1/p-1) is not an element of N, T/1+[t(1+vertical bar x vertical bar)(n)](1-p)[log(1+vertical bar x vertical bar)](p) when n(1/p - 1) is an element of N, and then establish a bilinear decomposition theorem for multiplications of functions in H-p(R-n) and its dual space C-alpha(R-n). To be precise, for any f is an element of H-p(R-n) and g is an element of C-alpha(R-n), the authors prove that the product of f and g, viewed as a distribution, can be decomposed into S(f, g)+T(f, g), where S is a bilinear operator bounded from H-p(R-n) x C-alpha(R-n) to L-1(R-n) and T a bilinear operator bounded from H-p(R-n) x C-alpha(R-n) to the Musielak-Orlicz Hardy space H-Phi p(R-n) associated with the above Musielak-Orlicz function Phi(p). Such a bilinear decomposition is sharp when na N, in the sense that any other vector space Y subset of H-Phi p(R-n) adapted to the above bilinear decomposition should satisfy (L-1(R-n)+Y)* = (L-1(R-n) + H-Phi p(R-n)*. To obtain the sharpness, the authors establish a characterization of the class of pointwise multipliers of C-alpha(R-n) by means of the dual space of H-Phi p(R-n) which is of independent interest. As an application, an estimate of the div-curl product involving the space H-Phi p(R-n) is discussed. This article naturally extends the known sharp bilinear decomposition of H-1(R-n) x BMO (R-n). (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:130 / 170
页数:41
相关论文
共 50 条
  • [1] Multiplication between elements in martingale Hardy spaces and their dual spaces
    Bakas, Odysseas
    Xu, Zhendong
    Zhai, Yujia
    Zhang, Hao
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (02)
  • [2] On dual spaces of anisotropic Hardy spaces
    Dekel, Shai
    Weissblat, Tal
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2078 - 2092
  • [3] Multiplication invariant subspaces of Hardy spaces
    Lance, TL
    Stessin, MI
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (01): : 100 - 118
  • [4] Multiplication operators on weighted Hardy spaces
    Sharma S.K.
    Komal B.S.
    [J]. Lobachevskii Journal of Mathematics, 2012, 33 (2) : 165 - 169
  • [5] Hardy–Orlicz Spaces and Their Multiplication Operators
    Qun Lu
    Guang Fu Cao
    Li Fang Liu
    [J]. Acta Mathematica Sinica, 2005, 21 : 593 - 598
  • [6] Multiplication Operators Between Discrete Hardy Spaces on Rooted Trees
    Muthukumar, P.
    Shankar, P.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (11) : 3252 - 3263
  • [7] Multiplication Operators Between Discrete Hardy Spaces on Rooted Trees
    P. Muthukumar
    P. Shankar
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 3252 - 3263
  • [8] Dual Spaces of Multiparameter Local Hardy Spaces
    Ding, Wei
    Yu, Feng
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [9] Compact weighted composition operators and multiplication operators between Hardy spaces
    Ueki, Sei-Ichiro
    Luo, Luo
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2008,
  • [10] ISOMETRIC MULTIPLICATION OF HARDY-ORLICZ SPACES
    DEEB, W
    KHALIL, R
    MARZUQ, M
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (02) : 177 - 189