Locality-Constrained Sparse Auto-Encoder for Image Classification

被引:16
|
作者
Luo, Wei [1 ]
Yang, Jian [1 ]
Xu, Wei [1 ]
Fu, Tao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
关键词
Feature learning; image classification; sparse auto-encoder;
D O I
10.1109/LSP.2014.2384196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a locality-constrained sparse auto-encoder (LSAE) for image classification in this letter. Previous work has shown that the locality is more essential than sparsity for classification task. We here introduce the concept of locality into the auto-encoder, which enables the auto-encoder to encode similar inputs using similar features. The proposed LSAE can be trained by the existing backprop algorithm; no complicated optimization is involved. Experiments on the CIFAR-10, STL-10 and Caltech-101 datasets validate the effectiveness of LSAE for classification task.
引用
收藏
页码:1070 / 1073
页数:4
相关论文
共 50 条
  • [1] Locality-constrained sparse representation for hyperspectral image classification
    Zhang, Yuanshu
    Ma, Yong
    Dai, Xiaobing
    Li, Hao
    Mei, Xiaoguang
    Ma, Jiayi
    [J]. INFORMATION SCIENCES, 2021, 546 : 858 - 870
  • [2] An Image Classification Method Based on Locality-Constrained Sparse Coding with Ranking Locality Adaptor
    Cao, Ye
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (04): : 832 - 836
  • [3] Locality-constrained Sparse Reconstruction for Trajectory Classification
    Li, Ce
    Han, Zhenjun
    Ye, Qixiang
    Gao, Shan
    Pang, Lijin
    Jiao, Jianbin
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2602 - 2606
  • [4] Deep Stacked Sparse Auto-encoder based on Patches for Image Classification
    Jemel, Intidar
    Hassairi, Salima
    Ejbali, Ridha
    Zaied, Mourad
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [5] Locality-Constrained Multi-Task Joint Sparse Representation for Image Classification
    Guo, Lihua
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (09): : 2177 - 2181
  • [6] Locality-constrained Linear Coding for Image Classification
    Wang, Jinjun
    Yang, Jianchao
    Yu, Kai
    Lv, Fengjun
    Huang, Thomas
    Gong, Yihong
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3360 - 3367
  • [7] Deep neural network for halftone image classification based on sparse auto-encoder
    Zhang, Yan
    Zhang, Erhu
    Chen, Wanjun
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 50 : 245 - 255
  • [8] Laplacian regularized locality-constrained coding for image classification
    Min, Huaqing
    Liang, Mingjie
    Luo, Ronghua
    Zhu, Jinhui
    [J]. NEUROCOMPUTING, 2016, 171 : 1486 - 1495
  • [9] Efficient sparse spiking auto-encoder for reconstruction, denoising and classification
    Walters, Ben
    Kalatehbali, Hamid Rahimian
    Cai, Zhengyu
    Genov, Roman
    Amirsoleimani, Amirali
    Eshraghian, Jason
    Azghadi, Mostafa Rahimi
    [J]. NEUROMORPHIC COMPUTING AND ENGINEERING, 2024, 4 (03):
  • [10] Tobacco leaf maturity classification based on sparse auto-encoder
    Wang, Jie
    Jia, Yuheng
    Zhao, Xin
    [J]. Tobacco Science and Technology, 2014, (09): : 18 - 22