Adaptive finite element method for nonmonotone quasi-linear elliptic problems

被引:2
|
作者
Guo, Liming [1 ]
Bi, Chunjia [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element method; Convergence; Quasi-optimality; Nonmonotone; Quasi-linear elliptic problems; POSTERIORI ERROR ESTIMATION; OPTIMAL CONVERGENCE RATE; OPTIMALITY; EQUATIONS;
D O I
10.1016/j.camwa.2021.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the simplest and the most standard adaptive finite element method for the secondorder nonmonotone quasi-linear elliptic problems with the exact solution u epsilon H-0(1+alpha) (Omega), alpha >= 1/2. The adaptive algorithm is based on the residual-based a posteriori error estimators and Dorfler's marking strategy. We prove the convergence and quasi-optimality of the adaptive finite element method when the initial mesh is sufficiently fine. Numerical experiments are provided to illustrate our findings.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条