Quartz crystal microbalance monitoring of large-area graphene anodization reveals layer fracturing

被引:0
|
作者
Svetlova, Anastasia [1 ,2 ]
Beltramo, Guillermo [3 ]
Kireev, Dmitry [1 ,4 ,5 ]
Offenhaeusser, Andreas [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Biol Informat Proc IBI 3, Wilhelm Johnen Str, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[3] Forschungszentrum Julich, Inst Biol Informat Proc IBI 2, Wilhelm Johnen Str, D-52425 Julich, Germany
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA
[5] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA
关键词
32;
D O I
10.1557/s43580-021-00053-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene has numerous potential applications in ultrathin electronics. There an electrode should function in contact with fluids and under mechanical stress; therefore, its stability is specifically of concern. Here, we explored a custom-made quartz crystal microbalance (QCM) sensor covered with wet-transferred large-scale monolayer graphene for investigation of an electrode behavior. Monolayer graphene was found to be stable on an oscillating substrate in contact with air and liquid. Under the liquid flow and simultaneously applied electrochemical potential, we managed to induce graphene oxidation, impact of which was observed on a quartz crystal microbalance monitoring and Raman spectra. Applied potentials of 1 V and higher (vs. Ag/AgCl reference electrode) caused graphene oxidation which led to loss of the layer integrity and erosion of the material. Graphic abstract
引用
收藏
页码:270 / 275
页数:6
相关论文
共 50 条
  • [1] Quartz crystal microbalance monitoring of large-area graphene anodization reveals layer fracturing
    Anastasia Svetlova
    Guillermo Beltramo
    Dmitry Kireev
    Andreas Offenhäusser
    MRS Advances, 2021, 6 : 270 - 275
  • [2] A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing
    Ohlsson, Gabriel
    Langhammer, Christoph
    Zoric, Igor
    Kasemo, Bengt
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (08):
  • [3] Pesticide monitoring with a quartz crystal microbalance
    Perkel, Jeffrey M.
    ANALYTICAL CHEMISTRY, 2009, 81 (03) : 859 - 859
  • [4] Layer-engineered large-area exfoliation of graphene
    Moon, Ji-Yun
    Kim, Minsoo
    Kim, Seung-Il
    Xu, Shuigang
    Choi, Jun-Hui
    Whang, Dongmok
    Watanabe, Kenji
    Taniguchi, Takashi
    Park, Dong Seop
    Seo, Juyeon
    Cho, Sung Ho
    Son, Seok-Kyun
    Lee, Jae-Hyun
    SCIENCE ADVANCES, 2020, 6 (44):
  • [5] Synthesis of Large-Area Single-Crystal Graphene
    Wang, Meihui
    Luo, Da
    Wang, Bin
    Ruoff, Rodney S.
    TRENDS IN CHEMISTRY, 2021, 3 (01): : 15 - 33
  • [6] IN-SITU MONITORING TECHNIQUE FOR GROWTH OF CdS LAYER BY QUARTZ CRYSTAL MICROBALANCE
    Yun, JaeHo
    Ahn, SeJin
    Lee, JeongChul
    Yoon, KyungHoon
    PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4, 2008, : 810 - 811
  • [7] Quartz crystal microbalance immunosensors for environmental monitoring
    Kurosawa, Shigeru
    Park, Jong-Won
    Aizawa, Hidenobu
    Wakida, Shin-Ichi
    Tao, Hiroaki
    Ishihara, Kazuhiko
    BIOSENSORS & BIOELECTRONICS, 2006, 22 (04): : 473 - 481
  • [8] A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer
    Jin, Hao
    Tao, Xiang
    Feng, Bin
    Yu, Liyang
    Wang, Demiao
    Dong, Shurong
    Luo, Jikui
    VACUUM, 2017, 140 : 101 - 105
  • [9] Rapid Identification of the Layer Number of Large-Area Graphene on Copper
    Qi, Zhikai
    Zhu, Xudong
    Jin, Hongchang
    Zhang, Tiezhu
    Kong, Xianghua
    Ruoff, Rodney S.
    Qiao, Zhenhua
    Ji, Hengxing
    CHEMISTRY OF MATERIALS, 2018, 30 (06) : 2067 - 2073
  • [10] Edge field emission of large-area single layer graphene
    Kleshch, Victor I.
    Bandurin, Denis A.
    Orekhov, Anton S.
    Purcell, Stephen T.
    Obraztsov, Alexander N.
    APPLIED SURFACE SCIENCE, 2015, 357 : 1967 - 1974