Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium

被引:29
|
作者
Nitol, Mashroor S. [1 ,2 ]
Dickel, Doyl E. [1 ,2 ]
Barrett, Christopher D. [1 ,2 ]
机构
[1] Mississippi State Univ, Dept Mech Engn, Starkville, MS 39759 USA
[2] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39759 USA
关键词
Neural network; Interatomic potential; Titanium; Zirconium; Multi-phase; EXPERIMENTAL CONSTRAINTS; PHASE-DIAGRAM; HCP; POTENTIALS;
D O I
10.1016/j.actamat.2021.117347
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here we present new neural network potentials capable of accurately modeling the transformations be-tween the alpha, beta, and omega phases of titanium(Ti) and zirconium (Zr), including accurate prediction of the equilibrium phase diagram. The potentials are constructed based on the rapid artificial neural network (RANN) formalism which bases its structural fingerprint on the modified embedded atom method. This implementation allows the potential to reproduce density functional theory results including elastic and plastic properties, phonon spectra, and relative energies of each of the three phases at classical molecular dynamics (MD) speeds. Transitions between each of the phase pairs are observed in dynamic simulation and, using calculations of the Gibbs free energy, both potentials are shown to accurately predict the ex-perimentally observed phase transformation temperatures and pressures over the entire phase diagram. The calculated triple points are 8.67 GPa and 1058 K for Ti and 5.04 GPa and 988.35 K for Zr, close to their experimentally observed values. The mechanism of transformation is also observed for each phase pair. The neural network potentials can be used to further investigate the behavior of each phase and their interaction. (C)2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Predictive models for inorganic materials thermoelectric properties with machine learning
    Don-tsa, Delchere
    Mohou, Messanh Agbeko
    Amouzouvi, Kossi
    Maaza, Malik
    Beltako, Katawoura
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [2] Epistemologies of predictive policing: Mathematical social science, social physics and machine learning
    Haelterlein, Jens
    BIG DATA & SOCIETY, 2021, 8 (01):
  • [3] Analyzing machine learning models to accelerate generation of fundamental materials insights
    Mitsutaro Umehara
    Helge S. Stein
    Dan Guevarra
    Paul F. Newhouse
    David A. Boyd
    John M. Gregoire
    npj Computational Materials, 5
  • [4] Analyzing machine learning models to accelerate generation of fundamental materials insights
    Umehara, Mitsutaro
    Stein, Helge S.
    Guevarra, Dan
    Newhouse, Paul F.
    Boyd, David A.
    Gregoire, John M.
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [5] Machine learning in the search for new fundamental physics
    Karagiorgi, Georgia
    Kasieczka, Gregor
    Kravitz, Scott
    Nachman, Benjamin
    Shih, David
    NATURE REVIEWS PHYSICS, 2022, 4 (06) : 399 - 412
  • [6] Machine learning in the search for new fundamental physics
    Georgia Karagiorgi
    Gregor Kasieczka
    Scott Kravitz
    Benjamin Nachman
    David Shih
    Nature Reviews Physics, 2022, 4 : 399 - 412
  • [7] Identifying domains of applicability of machine learning models for materials science
    Sutton, Christopher
    Boley, Mario
    Ghiringhelli, Luca M.
    Rupp, Matthias
    Vreeken, Jilles
    Scheffler, Matthias
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Identifying domains of applicability of machine learning models for materials science
    Christopher Sutton
    Mario Boley
    Luca M. Ghiringhelli
    Matthias Rupp
    Jilles Vreeken
    Matthias Scheffler
    Nature Communications, 11
  • [9] Machine learning in materials science
    Wei, Jing
    Chu, Xuan
    Sun, Xiang-Yu
    Xu, Kun
    Deng, Hui-Xiong
    Chen, Jigen
    Wei, Zhongming
    Lei, Ming
    INFOMAT, 2019, 1 (03) : 338 - 358
  • [10] Application of machine learning models in predictive maintenance of Francis hydraulic turbines
    de Souza, Julio Cesar Silva
    Honorato Junior, Oswaldo
    Tiago Filho, Geraldo Lucio
    Carpinteiro, Otavio Augusto Salgado
    Biancardine Junior, Hailton Silveira Domingues
    dos Santos, Ivan Felipe Silva
    RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2024, 29