MARTINGALE TRANSFORMS OF THE RADEMACHER SEQUENCE IN REARRANGEMENT INVARIANT SPACES

被引:0
|
作者
Astashkin, S. V. [1 ]
机构
[1] Samara State Univ, Academician Pavlov St, Samara 443011, Russia
关键词
Rearrangement invariant space; Orlicz space; martingale transform; Rademacher functions; Paley function; Haar functions; Boyd indices; stopping time;
D O I
10.1090/spmj/1383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let v(k) = c(k chi{tau >= k}), where tau is a stopping time with respect to the Rademacher system {r(k)} and c(k) is an element of R, k = 1, 2,. ... Then parallel to Sigma(n)(k=1) v(k)r(k)parallel to(X) asymptotic to parallel to Sigma(n)(k=1) v(k)(2))(1/2)parallel to(X) if and only if the rearrangement invariant Banach function space X has nontrivial Boyd indices. If the vk are the vectors Sigma(k-1)(i=0)a(k)(i)r(i), k = 1, 2, ... , the same relation is fulfilled if and only if X contains the closure of L-infinity in the Orlicz space exp L-1. In the second part of the paper, a new unconditionality criterion for the Haar system in a rearrangement invariant space is obtained in terms of a decoupling version of the transforms f(n) = Sigma(n)(k=1) v(k)r(k).
引用
收藏
页码:191 / 206
页数:16
相关论文
共 50 条