Multigrid Method for Poroelasticity Problem by Finite Element Method

被引:4
|
作者
Chen, Luoping [1 ]
Chen, Yanping [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Poroelasticity problem; finite element method; multigrid method; SOLVER;
D O I
10.4208/aamm.OA-2019-0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will investigate a multigrid algorithm for poroelasticity problem by a new finite element method with homogeneous boundary conditions in two dimensional space. We choose Nedelec edge element for the displacement variable and piecewise continuous polynomials for the pressure variable in the model problem. In constructing multigrid algorithm, a distributive Gauss-Seidel iteration method is applied. Numerical experiments shows that the finite element method achieves optimal convergence order and the multigrid algorithm is almost uniformly convergent to mesh size h and parameter delta t on regular meshes.
引用
收藏
页码:1339 / 1357
页数:19
相关论文
共 50 条
  • [1] Multigrid Finite Element Method on Semi-Structured Grids for the Poroelasticity Problem
    Gaspar, F. J.
    Lisbona, F. J.
    Rodrigo, C.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 343 - 350
  • [2] Generalized Multiscale Finite Element Method for the poroelasticity problem in multicontinuum media
    Tyrylgin, Aleksei
    Vasilyeva, Maria
    Spiridonov, Denis
    Chung, Eric T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374
  • [3] Multigrid for the mortar finite element method
    Gopalakrishnan, J
    Pasciak, JE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 1029 - 1052
  • [4] A MULTIGRID VERSION OF A SIMPLE FINITE-ELEMENT METHOD FOR THE STOKES PROBLEM
    PITKARANTA, J
    SAARINEN, T
    [J]. MATHEMATICS OF COMPUTATION, 1985, 45 (171) : 1 - 14
  • [5] Multigrid method for nonlinear poroelasticity equations
    Luo, P.
    Rodrigo, C.
    Gaspar, F. J.
    Oosterlee, C. W.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2015, 17 (05) : 255 - 265
  • [6] Analysis of a multiphysics finite element method for a poroelasticity model
    Feng, Xiaobing
    Ge, Zhihao
    Li, Yukun
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 330 - 359
  • [7] A stabilized hybrid mixed finite element method for poroelasticity
    Chunyan Niu
    Hongxing Rui
    Xiaozhe Hu
    [J]. Computational Geosciences, 2021, 25 : 757 - 774
  • [8] A stabilized hybrid mixed finite element method for poroelasticity
    Niu, Chunyan
    Rui, Hongxing
    Hu, Xiaozhe
    [J]. COMPUTATIONAL GEOSCIENCES, 2021, 25 (02) : 757 - 774
  • [9] A multigrid algorithm for the mortar finite element method
    Braess, D
    Dahmen, W
    Wieners, C
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 48 - 69
  • [10] Multigrid techniques for the finite element method in electromagnetics
    Atlamazoglou, PE
    Uzunoglu, NK
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS: STATE OF THE ART AND FUTURE TRENDS, 2000, 171 : 521 - 528