A matching prior for extreme quantile estimation of the generalized Pareto distribution

被引:3
|
作者
Ho, Kwok-Wah [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
关键词
Quantile estimation; Generalized Pareto distribution; Peaks-over-threshold model; Risk management; Probability matching prior; FREQUENTIST VALIDITY; PARAMETER; ORDER; PREDICTION;
D O I
10.1016/j.jspi.2009.12.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1513 / 1518
页数:6
相关论文
共 50 条