An important GL(n) invariant functional of centred (origin symmetric) convex bodies that has received particular attention is the volume product. For a centred convex body A subset of R-n it is defined by P(A) := vertical bar A vertical bar . vertical bar A*vertical bar. where vertical bar.vertical bar denotes volume and A* is the polar body of A. If A is a centred zonoid, then it is known that P(A) >= P(C-n), where C-n is a centred affine cube. i.e. a Minkowski sum of n linearly independent centred segments. Equality holds in the class of centred zonoids if and only if A is a centred affine cube. Here we sharpen this uniqueness statement in terms of a stability result by showing in a quantitative form that the Banach-Mazur distance of a centred zonoid A from a centred affine cube is small if P(A) is close to P(C-n). This result is then applied to strengthen a uniqueness result in stochastic geometry. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Kim, Jaegil
Zvavitch, Artem
论文数: 0引用数: 0
h-index: 0
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USAUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Lin, Youjiang
Leng, Gangsong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Dept Math, Shanghai 200444, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
机构:
Univ Marne La Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, FranceUniv Marne La Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, France
Fradelizi, M.
Meyer, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marne La Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, FranceUniv Marne La Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, France