ON OBSERVER DESIGN FOR NONLINEAR CAPUTO FRACTIONAL-ORDER SYSTEMS

被引:29
|
作者
Jmal, Assaad [1 ]
Naifar, Omar [1 ]
Ben Makhlouf, Abdellatif [2 ]
Derbel, Nabil [1 ]
Hammami, Mohamed Ali [2 ]
机构
[1] Sfax Univ, Engn Natl Sch, Elect Engn Dept, Control & Energy Management Lab CEM Lab, BP 1173, Sfax 3038, Tunisia
[2] Sfax Univ, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
关键词
Fractional-order systems; nonlinear systems; observer design; separation principle; STABILITY;
D O I
10.1002/asjc.1645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The observer design problem for integer-order systems has been the subject of several studies. However, much less interest has been given to the more general fractional-order systems, where the fractional-order derivative is between 0 and 1. In this paper, a particular form of observers for integer-order Lipschitz, one-sided Lipschitz and quasi-one-sided Lipschitz systems, is extended to the fractional-order calculus. Then, the obtained states estimates are used for an eventual feedback control, and the separation principle is tackled. The effectiveness of the proposed scheme is shown through simulation for two numerical examples.
引用
收藏
页码:1533 / 1540
页数:8
相关论文
共 50 条
  • [1] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):
  • [2] Observer design for a class of nonlinear fractional-order systems with unknown input
    Kong, Shulan
    Saif, Mehrdad
    Liu, Bing
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (13): : 5503 - 5518
  • [3] Stability analysis of Caputo fractional-order nonlinear systems revisited
    Hadi Delavari
    Dumitru Baleanu
    Jalil Sadati
    [J]. Nonlinear Dynamics, 2012, 67 : 2433 - 2439
  • [4] Stability analysis of Caputo fractional-order nonlinear systems revisited
    Delavari, Hadi
    Baleanu, Dumitru
    Sadati, Jalil
    [J]. NONLINEAR DYNAMICS, 2012, 67 (04) : 2433 - 2439
  • [5] External stability of Caputo fractional-order nonlinear control systems
    Wu, Cong
    Ren, Jiaojiao
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (12) : 4041 - 4055
  • [6] H Adaptive observer for nonlinear fractional-order systems
    N'doye, Ibrahima
    Laleg-Kirati, Taous-Meriem
    Darouach, Mohamed
    Voos, Holger
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (03) : 314 - 331
  • [7] Fractional-Order Interval Observer for Multiagent Nonlinear Systems
    Zhang, Haoran
    Huang, Jun
    He, Siyuan
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [8] Practical Stability of Observer-Based Control for Nonlinear Caputo-Hadamard Fractional-Order Systems
    Issaoui, Rihab
    Naifar, Omar
    Tlija, Mehdi
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [9] A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems
    Kahouli, Omar
    Naifar, Omar
    Ben Makhlouf, Abdellatif
    Bouteraa, Yassine
    Aloui, Ali
    Rebhi, Ali
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [10] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Chen, Kai
    Tang, Rongnian
    Li, Chuang
    Wei, Pengna
    [J]. NONLINEAR DYNAMICS, 2018, 94 (01) : 415 - 427