Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs

被引:5
|
作者
Becker, Roland [1 ]
Brunner, Maximilian [2 ]
Innerberger, Michael [2 ]
Melenk, Jens Markus [2 ]
Praetorius, Dirk [2 ]
机构
[1] Univ Pau & Pays Adour, IPRA LMAP, Ave Univ BP 1155, PAU, France
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-E101-4, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Adaptive finite element method; Semilinear PDEs; Quantity of interest; A posteriori error estimation; Goal-oriented adaptive algorithm; Optimal convergence rates; OPTIMAL CONVERGENCE-RATES; ELEMENT METHODS;
D O I
10.1016/j.camwa.2022.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and analyze a goal-oriented adaptive finite element method for a semilinear elliptic PDE and a linear goal functional. The discretization is based on finite elements of arbitrary (but fixed) polynomial degree and involves a linearized dual problem. The linearization is part of the proposed algorithm, which employs a marking strategy different to that of standard adaptive finite element methods. Moreover, unlike the wellknown dual-weighted residual strategy, the analyzed error estimators are completely computable. We prove linear convergence and, for the first time in the context of goal-oriented adaptivity for nonlinear PDEs, optimal algebraic convergence rates. In particular, the analysis does not require a sufficiently fine initial mesh.
引用
收藏
页码:18 / 35
页数:18
相关论文
共 50 条
  • [1] Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2193 - 2225
  • [2] Plain convergence of goal-oriented adaptive FEM *
    Helml, Valentin
    Innerberger, Michael
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 130 - 149
  • [3] Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs
    Maximilian Brunner
    Dirk Praetorius
    Julian Streitberger
    Numerische Mathematik, 2025, 157 (2) : 409 - 445
  • [4] Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations
    Xu, Fei
    Huang, Qiumei
    Yang, Huiting
    Ma, Hongkun
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 224 - 241
  • [5] Optimal Convergence Rates for Goal-Oriented FEM with Quadratic Goal Functional
    Becker, Roland
    Innerberger, Michael
    Praetorius, Dirk
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (02) : 267 - 288
  • [6] On goal-oriented adaptivity for elliptic optimal control problems
    Weiser, Martin
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (05): : 969 - 992
  • [7] Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs
    Bespalov, Alex
    Praetorius, Dirk
    Rocchi, Leonardo
    Ruggeri, Michele
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 951 - 982
  • [8] Convergence of goal-oriented adaptive finite element methods for semilinear problems
    Holst, Michael
    Pollock, Sara
    Zhu, Yunrong
    COMPUTING AND VISUALIZATION IN SCIENCE, 2015, 17 (01) : 43 - 63
  • [9] Analysis of a goal-oriented adaptive two-grid finite-element algorithm for semilinear elliptic problems
    Fei Li
    Nianyu Yi
    Computational and Applied Mathematics, 2022, 41
  • [10] Analysis of a goal-oriented adaptive two-grid finite-element algorithm for semilinear elliptic problems
    Li, Fei
    Yi, Nianyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):