GLOBAL EXISTENCE FOR HIGH DIMENSIONAL QUASILINEAR WAVE EQUATIONS EXTERIOR TO STAR-SHAPED OBSTACLES

被引:15
|
作者
Metcalfe, Jason [1 ]
Sogge, Christopher D. [2 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
Wave equation; global existence; exterior domain; NONLINEAR HYPERBOLIC-EQUATIONS; STRAUSS-CONJECTURE; LIFE-SPAN;
D O I
10.3934/dcds.2010.28.1589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global existence for quasilinear wave equations in high dimensional exterior domains with Dirichlet boundary conditions. In particular, we permit the nonlinear term to depend on the solution, not just its first and second derivatives. The key estimates are variants on localized energy estimates.
引用
收藏
页码:1589 / 1601
页数:13
相关论文
共 50 条