ON THE VOLUME GROWTH OF KAHLER MANIFOLDS WITH NONNEGATIVE BISECTIONAL CURVATURE

被引:0
|
作者
Liu, Gang [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
RICCI CURVATURE; SPACES; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a complete Kahler manifold with nonnegative bisectional curvature. Suppose the universal cover does not split and 111 admits a nonconstant holomorphic function with polynomial growth; we prove M must be of maximal volume growth. This confirms a conjecture of Ni in [17]. There are two essential ingredients in the proof: the Cheeger-Colding theory [2]-[5] on Gromov-Hausdorff convergence of manifolds and the three circle theorem for holomorphic functions in [14].
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条