Semantic 3D Mapping from Deep Image Segmentation

被引:1
|
作者
Martin, Francisco [1 ]
Gonzalez, Fernando [1 ]
Guerrero, Jose Miguel [1 ]
Fernandez, Manuel [1 ]
Gines, Jonatan [2 ]
机构
[1] Univ Rey Juan Carlos, Intelligent Robot Lab, Fuenlabrada 28943, Spain
[2] Rey Juan Carlos Univ, Escuela Int Doctorado, Mostoles 28933, Spain
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 04期
关键词
image segmentation; deep learning; 3D semantic mapping;
D O I
10.3390/app11041953
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The perception and identification of visual stimuli from the environment is a fundamental capacity of autonomous mobile robots. Current deep learning techniques make it possible to identify and segment objects of interest in an image. This paper presents a novel algorithm to segment the object's space from a deep segmentation of an image taken by a 3D camera. The proposed approach solves the boundary pixel problem that appears when a direct mapping from segmented pixels to their correspondence in the point cloud is used. We validate our approach by comparing baseline approaches using real images taken by a 3D camera, showing that our method outperforms their results in terms of accuracy and reliability. As an application of the proposed algorithm, we present a semantic mapping approach for a mobile robot's indoor environments.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Deep Projective 3D Semantic Segmentation
    Lawin, Felix Jaremo
    Danelljan, Martin
    Tosteberg, Patrik
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 95 - 107
  • [2] Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation
    Alalwan, Nasser
    Abozeid, Amr
    ElHabshy, AbdAllah A.
    Alzahrani, Ahmed
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1231 - 1239
  • [3] A Review of Segmentation Methods for 3D Semantic Mapping
    Romero-Gonzalez, Cristina
    Martinez-Gomez, Jesus
    Garcia-Varea, Ismael
    [J]. FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 2, 2020, 1093 : 620 - 631
  • [4] Iterative Deep Fusion for 3D Semantic Segmentation
    Duerr, Fabian
    Weigel, Hendrik
    Maehlisch, Mirko
    Beyerer, Juergen
    [J]. 2020 FOURTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2020), 2020, : 391 - 397
  • [5] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    [J]. 27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [6] DeLS-3D: Deep Localization and Segmentation with a 3D Semantic Map
    Wang, Peng
    Yang, Ruigang
    Cao, Binbin
    Xu, Wei
    Lin, Yuanqing
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5860 - 5869
  • [7] AN IMAGE-BASED DEEP LEARNING WORKFLOW FOR 3D HERITAGE POINT CLOUD SEMANTIC SEGMENTATION
    Pellis, E.
    Murtiyoso, A.
    Masiero, A.
    Tucci, G.
    Betti, M.
    Grussenmeyer, P.
    [J]. 9TH INTERNATIONAL WORKSHOP 3D-ARCH 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, VOL. 46-2, 2022, : 429 - 434
  • [8] A 3D Convolutional Neural Network for Volumetric Image Semantic Segmentation
    Lu, Hongya
    Wang, Haifeng
    Zhang, Qianqian
    Yoon, Sang Won
    Won, Daehan
    [J]. 25TH INTERNATIONAL CONFERENCE ON PRODUCTION RESEARCH MANUFACTURING INNOVATION: CYBER PHYSICAL MANUFACTURING, 2019, 39 : 422 - 428
  • [9] Decoupled Iterative Deep Sensor Fusion for 3D Semantic Segmentation
    Duerr, Fabian
    Weigel, Hendrik
    Beyerer, Juergen
    [J]. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (03) : 293 - 312
  • [10] Deep semantic segmentation for 3D as-is bridge model generation
    Turkan, Y.
    Xu, Y.
    [J]. SUSTAINABLE BUILDINGS AND STRUCTURES: BUILDING A SUSTAINABLE TOMORROW, 2020, : 16 - 16