An Antioxidant Screen Identifies Candidates for Protection of Cochlear Hair Cells from Gentamicin Toxicity

被引:29
|
作者
Noack, Volker [1 ]
Pak, Kwang [1 ,2 ]
Jalota, Rahul [1 ]
Kurabi, Arwa [1 ]
Ryan, Allen F. [1 ,2 ]
机构
[1] Univ Calif San Diego, Sch Med, Dept Surg & Otolaryngol, San Diego, CA 92103 USA
[2] VA San Diego Healthcare Syst, San Diego, CA USA
关键词
inner ear; sensory cell; redox; ototoxicity; damage prevention; hair cell; screen; CISPLATIN-INDUCED OTOTOXICITY; FREE-RADICAL SCAVENGER; N-ACETYLCYSTEINE; HEARING-LOSS; LIPOIC ACID; ACOUSTIC TRAUMA; NOISE; THYMOQUINONE; RESVERATROL; MECHANISMS;
D O I
10.3389/fncel.2017.00242
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reactive oxygen species are important elements in ototoxic damage to hair cells (HCs), appearing early in the damage process. Higher levels of natural antioxidants are positively correlated with resistance to ototoxins and many studies have shown that exogenous antioxidants can protect HCs from damage. While a very wide variety of antioxidants with different characteristics and intracellular targets exist, most ototoxicity studies have focused upon one or a few well-characterized compounds. Relatively little research has attempted to determine the comparative efficacy of large variety of different antioxidants. This has been in part due to the lack of translation between cell culture and in vivo measures of efficacy. To circumvent this limitation, we used an in vitro assay based on micro-explants from the basal and middle turns of the neonatal mouse organ of Corti to screen a commercial redox library of diverse antioxidant compounds for their ability to protect mammalian HCs from a high dose of the ototoxic antibiotic gentamicin. The library included several antioxidants that have previously been studied as potential treatments for HC damage, as well as many antioxidants that have never been applied to ototoxicity. The micro-explants were treated with 200 mu M gentamicin alone, gentamicin plus one of three dosages of a redox compound, the highest dosage of compound alone, or were untreated. HC counts were determined before the gentamicin insult and at 1, 2, and 3 days afterward to evaluate the HC survival. From a total of 81 antioxidant compounds, 13 exhibited significant protection of HCs. These included members of a variety of antioxidant classes with several novel antioxidants, not previously tested on HCs, appearing to alleviate the damaging gentamicin effect. Some compounds previously shown to be protective of HCs were correspondingly protective in this in vitro screen, while others were not. Finally, one of the three pro-oxidant compounds included in the library as well as six antioxidants exhibited evidence of toxicity in the absence of gentamicin. The results demonstrate the wide variability in the ability of antioxidants to protect HCs from high-dose gentamicin damage, and identify promising candidate leads for further study as potential drug targets. Highlights A medium-throughput assay based on micro-explants of the organ of Corti was developed to screen mammalian cochlear hair cells for protection from damage by ototoxins. Eighty one antioxidants and 3 pro-oxidants were evaluated for hair cell protection from high-dose gentamicin. Thirteen antioxidants were significantly protective, while 6 proved to be damaging. The use of a common assay permitted an evaluation of the relative capacity of different antioxidants for the protection of hair cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Protection of cochlear hair cells from gentamicin ototoxicity and mechanisms of mammalian hair cell regeneration in vitro
    Gao, WQ
    CELL AND MOLECULAR BIOLOGY OF THE EAR, 2000, : 183 - 197
  • [2] Fenofibrate exerts protective effects against gentamicin-induced toxicity in cochlear hair cells by activating antioxidant enzymes
    Park, Channy
    Ji, Hye-Min
    Kim, Se-Jin
    Kil, Sung-Hee
    Lee, Joon No
    Kwak, Seongae
    Choe, Seong-Kyu
    Park, Raekil
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2017, 39 (04) : 960 - 968
  • [3] Zinc protection against pneumolysin toxicity on rat cochlear hair cells
    Franco-Vidal, Valerie
    Beurg, Maryline
    Darrouzet, Vincent
    Bebear, Jean-Pierre
    Skinner, Liam J.
    Dulon, Didier
    AUDIOLOGY AND NEURO-OTOLOGY, 2008, 13 (01) : 65 - 70
  • [4] Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity
    Ding, DL
    Stracher, A
    Salvi, RJ
    HEARING RESEARCH, 2002, 164 (1-2) : 115 - 126
  • [5] M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity
    McFadden, SL
    Ding, DL
    Salvemini, D
    Salvi, RJ
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2003, 186 (01) : 46 - 54
  • [6] Resveratrol protects auditory hair cells from gentamicin toxicity
    Bonabi, Sharouz
    Caelers, Antje
    Monge, Arianne
    Huber, Alex
    Bodmer, Daniel
    ENT-EAR NOSE & THROAT JOURNAL, 2008, 87 (10) : 570 - 573
  • [7] Effects of tetramethylpyrazine on regeneration of cochlear hair cells after gentamicin poisoning
    Ni, Yue-qiu
    Fu, Wen-shuang
    Li, Yu-fang
    Li, Hui
    ACTA PHARMACOLOGICA SINICA, 2017, 38 (07) : 1089 - 1089
  • [8] KINETICS OF GENTAMICIN IN COCHLEAR HAIR-CELLS AFTER CHRONIC TREATMENT
    HIEL, H
    BENNANI, H
    ERRE, JP
    AUROUSSEAU, C
    ARAN, JM
    ACTA OTO-LARYNGOLOGICA, 1992, 112 (02) : 272 - 277
  • [9] Metformin Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in vitro
    Glutz, Andrea
    Leitmeyer, Katharina
    Setz, Cristian
    Brand, Yves
    Bodmer, Daniel
    AUDIOLOGY AND NEURO-OTOLOGY, 2015, 20 (06) : 360 - 369
  • [10] Telmisartan Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in vitro
    Cortada, Maurizio
    Wei, Eric
    Jain, Neha
    Levano, Soledad
    Bodmer, Daniel
    AUDIOLOGY AND NEURO-OTOLOGY, 2020, 25 (06) : 297 - 308