Sentiment Analysis on Tweets for a Disease and Treatment Combination

被引:0
|
作者
Meena, R. [1 ]
Bai, V. Thulasi [2 ]
Omana, J. [1 ]
机构
[1] Prathyusha Engn Coll, Dept CSE, Chennai, Tamil Nadu, India
[2] KCG Engn Coll, Dept ECE, Chennai, Tamil Nadu, India
关键词
Cancer; Chemotherapy; Polarity; Naive Bayes; Bigrams; CANCER; WEB;
D O I
10.1007/978-3-030-37218-7_134
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proposed work has retrieved tweets on a particular disease and treatment combination from twitter and they were processed to extract the sentiments. Initially the polarity values were set up in a range from weakly negative to strongly positive and the tweets were analyzed. The overall sentiment of the tweets related to breast cancer and chemotherapy was weakly positive. Naive Bayes algorithm was applied on the tweets retrieved on the same disease and treatment combination. Nearly 10,000 tweets were analyzed using the Pubmed and Google book search engine as a training corpus. The sentiments were plotted in the graph which shows that the sentiments were neutral. Lastly, to find the most occurred word in the tweets, bigrams were used and cooccurrence of words were plotted using Natural Language Tool Kit in python.
引用
收藏
页码:1283 / 1293
页数:11
相关论文
共 50 条
  • [1] Sentiment Analysis on Tweets
    Khatoon, Mehjabin
    Banu, W. Aisha
    Zohra, A. Ayesha
    Chinthamani, S.
    SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 717 - 724
  • [2] Sentiment Analysis in Arabic Tweets
    Duwairi, R. M.
    Marji, Raed
    Sha'ban, Narmeen
    Rushaidat, Sally
    2014 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2014,
  • [3] Tweets Classification and Sentiment Analysis for Personalized Tweets Recommendation
    Khattak, Asad Masood
    Batool, Rabia
    Satti, Fahad Ahmed
    Hussain, Jamil
    Khan, Wajahat Ali
    Khan, Adil Mehmood
    Hayat, Bashir
    COMPLEXITY, 2020, 2020
  • [4] Detecting Negative Sentiment on Sarcastic Tweets for Sentiment Analysis
    Li, Qingyuan
    Zhang, Kai
    Sun, Lin
    Xia, Ruichen
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X, 2023, 14263 : 479 - 491
  • [5] Sentiment lexicon for sentiment analysis of Saudi dialect tweets
    Al-Thubaity, Abdulmohsen
    Alqahtani, Qubayl
    Aljandal, Abdulaziz
    ARABIC COMPUTATIONAL LINGUISTICS, 2018, 142 : 301 - 307
  • [6] Sentiment Analysis on Naija-Tweets
    Kolajo, Taiwo
    Daramola, Olawande
    Adebiyi, Ayodele
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, 2019, : 338 - 343
  • [7] Annotation of a Corpus of Tweets for Sentiment Analysis
    dos Santos, Allisfrank
    Barros Junior, Jorge Daniel
    Camargo, Heloisa de Arruda
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2018, 2018, 11122 : 294 - 302
  • [8] Classification of Tweets for sentiment and Trend Analysis
    Arulselvi, Christiyana A.
    Sendhilkumar, S.
    Mahalakshmi, S.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2017, : 566 - 573
  • [9] A BERT Framework to Sentiment Analysis of Tweets
    Bello, Abayomi
    Ng, Sin-Chun
    Leung, Man-Fai
    SENSORS, 2023, 23 (01)
  • [10] Sentiment Analysis of Tweets Using Semantic Analysis
    Kale, Snehal
    Padmadas, Vijaya
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,