Optimized Machine Learning Approach for the Prediction of Diabetes-Mellitus

被引:3
|
作者
Challa, Manoj [1 ]
Chinnaiyan, R. [2 ]
机构
[1] CMR Inst Technol, Dept Comp Sci & Engn, Bengaluru, India
[2] CMR Inst Technol, Dept Informat Sci & Engn, Bengaluru, India
关键词
Diabetes; Metabolic disorder; Insulin; Malfunction; Machine learning; Health care;
D O I
10.1007/978-3-030-37218-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetes is one of the most common disorders in this modern society. In general, Diabetes-mellitus refers to the metabolic disorder by means of malfunction in insulin secretion and action. The proposed optimized machine learning models both decision tree and random forest models presented in this paper must predict the diabetes mellitus based the factors like BP, BMI and GL. The results build from the data sets are more precise, crisp and can be applied for health care sectors. This proposed model is more suitable for optimized decision making in health care environment.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 50 条
  • [1] Prediction and Diagnosis of Diabetes Mellitus -A Machine Learning Approach
    Vijayan, Veena V.
    Anjali, C.
    [J]. PROCEEDINGS OF THE 2015 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2015, : 122 - 127
  • [2] COMPARATIVE RISK ANALYSIS ON PREDICTION OF DIABETES MELLITUS USING MACHINE LEARNING APPROACH
    Swain, Aparimita
    Mohanty, Sachi Nandan
    Das, Ananta Chandra
    [J]. 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 3312 - 3317
  • [3] Machine Learning Approach for Postprandial Blood Glucose Prediction in Gestational Diabetes Mellitus
    Pustozerov, Evgenii A.
    Tkachuk, Aleksandra S.
    Vasukova, Elena A.
    Anopova, Anna D.
    Kokina, Maria A.
    Gorelova, Inga V.
    Pervunina, Tatiana M.
    Grineva, Elena N.
    Popova, Polina V.
    [J]. IEEE ACCESS, 2020, 8 : 219308 - 219321
  • [4] REQUIREMENTS AND PRINCIPLES OF AN OPTIMIZED DIABETES TREATMENT - DIABETES-MELLITUS AND OBESITY
    EGGSTEIN, M
    HOFFMANN, D
    MILLER, P
    SCHMULLING, S
    [J]. MUNCHENER MEDIZINISCHE WOCHENSCHRIFT, 1980, 122 (03): : 70 - 73
  • [5] Prediction of Diabetes Mellitus Progression Using Supervised Machine Learning
    Chauhan, Apoorva S.
    Varre, Mathew S.
    Izuora, Kenneth
    Trabia, Mohamed B.
    Dufek, Janet S.
    [J]. SENSORS, 2023, 23 (10)
  • [6] The early prediction of gestational diabetes mellitus by machine learning models
    Kaya, Yeliz
    Butun, Zafer
    Celik, Ozer
    Salik, Ece Akca
    Tahta, Tugba
    Yavuz, Arzu Altun
    [J]. BMC PREGNANCY AND CHILDBIRTH, 2024, 24 (01)
  • [7] Diabetes Mellitus Prediction Through Interactive Machine Learning Approaches
    Panda, Rabinarayan
    Dash, Sachikanta
    Padhy, Sasmita
    Das, Rajendra Kumar
    [J]. NEXT GENERATION OF INTERNET OF THINGS, 2023, 445 : 143 - 152
  • [8] An Overview of Diabetes Mellitus Prediction Through Machine Learning Approaches
    Atif, Mohammad
    Siddiqui, Jamshed
    Talib, Faisal
    [J]. PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 1145 - 1150
  • [9] A machine learning approach for early prediction of gestational diabetes mellitus using elemental contents in fingernails
    Chan, Yun-Nam
    Wang, Pengpeng
    Chun, Ka-Him
    Lum, Judy Tsz-Shan
    Wang, Hang
    Zhang, Yunhui
    Leung, Kelvin Sze-Yin
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] A machine learning approach for early prediction of gestational diabetes mellitus using elemental contents in fingernails
    Yun-Nam Chan
    Pengpeng Wang
    Ka-Him Chun
    Judy Tsz-Shan Lum
    Hang Wang
    Yunhui Zhang
    Kelvin Sze-Yin Leung
    [J]. Scientific Reports, 13