Symmetric duality for a class of nondifferentiable multi-objective fractional variational problems

被引:7
|
作者
Mishra, S. K. [1 ]
Wang, S. Y.
Lai, K. K.
机构
[1] Govind Ballabh Pant Univ Agr & Technol, Dept Math Stat & Comp Sci, Coll Basic Sci & Human, Pantnagar 263145, Uttar Pradesh, India
[2] City Univ Hong Kong, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 1000800, Peoples R China
[4] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear programming; symmetric duality; variational problems; generalized convexity;
D O I
10.1016/j.jmaa.2006.11.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a symmetric dual pair for a class of nondifferentiable multi-objective fractional variational problems. Weak, strong, converse and self duality relations are established under certain invexity assumptions. The paper includes extensions of previous symmetric duality results for multi-objective fractional variational problems obtained by Kim, Lee and Schaible [D.S. Kim, W.J. Lee, S. Schaible, Symmetric duality for invex multiobjective fractional variational problems, J. Math. Anal. Appl. 289 (2004) 505-521] and symmetric duality results for the static case obtained by Yang, Wang and Deng [X.M. Yang, S.Y. Wang, X.T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl. 274 (2002) 279-2951 to the dynamic case. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1093 / 1110
页数:18
相关论文
共 50 条