On Symbolic Solutions of Algebraic Partial Differential Equations

被引:0
|
作者
Grasegger, Georg [1 ,2 ]
Lastra, Alberto [3 ]
Sendra, J. Rafael [3 ]
Winkler, Franz [2 ]
机构
[1] Johannes Kepler Univ Linz, Doctoral Program Computat Math, A-4040 Linz, Austria
[2] Johannes Kepler Univ Linz, Symbol Computat Res Inst, A-4040 Linz, Austria
[3] Univ Alcala de Henares, Dpto Fis Matemat, E-28871 Alcala De Henares, Spain
基金
奥地利科学基金会;
关键词
Partial differential equations; algebraic surfaces; rational parametrizations; radical parametrizations; RATIONAL GENERAL-SOLUTIONS; PARAMETRIZATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present a general procedure for solving first-order autonomous algebraic partial differential equations in two independent variables. The method uses proper rational parametrizations of algebraic surfaces and generalizes a similar procedure for first-order autonomous ordinary differential equations. We will demonstrate in examples that, depending on certain steps in the procedure, rational, radical or even non-algebraic solutions can be found. Solutions computed by the procedure will depend on two arbitrary independent constants.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 50 条