Pilot Workload Prediction from ECG Using Deep Convolutional Neural Networks

被引:0
|
作者
Xi, Pengcheng [1 ,2 ]
Law, Andrew [3 ]
Goubran, Rafik [4 ]
Shu, Chang [5 ]
机构
[1] Carleton Univ, Ottawa, ON, Canada
[2] CNR, Ottawa, ON, Canada
[3] CNR, Aerosp, Ottawa, ON, Canada
[4] Carleton Univ, Syst & Comp Engn, Ottawa, ON, Canada
[5] CNR, Digital Technol, Ottawa, ON, Canada
关键词
machine learning; neural networks; biomedical signal processing; HEART-RATE; CLASSIFICATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pilot workload monitoring plays an important role in aviation safety. Heart rate, heart rate variability, and respiration rate have been shown to correlate with pilot workload and can be measured using electrocardiograms (ECG). Traditional machine learning approaches rely on manually extracting features from ECG, which is a difficult and time-consuming process. Recent years witnessed the success of deep neural networks, especially deep convolutional neural networks (CNNs), in computer vision and related domains; however, the application of deep CNNs onto the ECG data faces challenges on both data insufficiency and lack of tailored CNN architectures. With a small training set, this work proposes the use of transfer learning with pre-trained deep CNNs for the prediction of pilot workload. Two ECG-derived visual representations, spectrograms and scalo-grams, are compared for their performance on the prediction. Experimental results indicate that the scalograms perform better (at 51:35%) than spectrograms (at 45:85%) in predicting three levels of pilot workload. With the scalograms, using the pre-trained deep CNNs as "off-the-shelf" feature extractors yields better performance than fine-tuning the deep CNNs (at 42:44%) for the ECG data. The deep features are visualized using dimension reduction with t-sne.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep-ECG: Convolutional Neural Networks for ECG biometric recognition
    Labati, Ruggero Donida
    Munoz, Enrique
    Piuri, Vincenzo
    Sassi, Roberto
    Scotti, Fabio
    PATTERN RECOGNITION LETTERS, 2019, 126 : 78 - 85
  • [2] Prediction to Atrial Fibrillation Using Deep Convolutional Neural Networks
    Cho, Jungrae
    Kim, Yoonnyun
    Lee, Minho
    PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 164 - 171
  • [3] Move Prediction Using Deep Convolutional Neural Networks in Hex
    Gao, Chao
    Hayward, Ryan
    Mueller, Martin
    IEEE TRANSACTIONS ON GAMES, 2018, 10 (04) : 336 - 343
  • [4] Prediction of Heart Disease Using Deep Convolutional Neural Networks
    Awais Mehmood
    Munwar Iqbal
    Zahid Mehmood
    Aun Irtaza
    Marriam Nawaz
    Tahira Nazir
    Momina Masood
    Arabian Journal for Science and Engineering, 2021, 46 : 3409 - 3422
  • [5] Prediction of Heart Disease Using Deep Convolutional Neural Networks
    Mehmood, Awais
    Iqbal, Munwar
    Mehmood, Zahid
    Irtaza, Aun
    Nawaz, Marriam
    Nazir, Tahira
    Masood, Momina
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (04) : 3409 - 3422
  • [6] Inter-patient ECG Classification Using Deep Convolutional Neural Networks
    Takalo-Mattila, Janne
    Kiljander, Jussi
    Soininen, Juha-Pekka
    2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2018), 2018, : 421 - 425
  • [7] ECG Heartbeat Classification Using Convolutional Neural Networks
    Xu, Xuexiang
    Liu, Hongxing
    IEEE ACCESS, 2020, 8 (08): : 8614 - 8619
  • [8] Deep Convolutional Neural Networks for Fish Weight Prediction from Images
    Yang, Yunhan
    Xue, Bing
    Jesson, Linley
    Wylie, Matthew
    Zhang, Mengjie
    Wellenreuther, Maren
    PROCEEDINGS OF THE 2021 36TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2021,
  • [9] Crop yield prediction with deep convolutional neural networks
    Nevavuori, Petteri
    Narra, Nathaniel
    Lipping, Tarmo
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 163
  • [10] Radio Propagation Prediction Model Using Convolutional Neural Networks by Deep Learning
    Imai, T.
    Kitao, K.
    Inomata, M.
    2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2019,