From subdiffusion to superdiffusion of particles on solid surfaces

被引:0
|
作者
Lacasta, AM
Sancho, JM
Romero, AH
Sokolov, IM
Lindenberg, K
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, E-08028 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[3] IPICyT, Adv Mat Dept, San Luis Potosi 78231, Mexico
[4] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[5] Univ Calif San Diego, Dept Chem & Biochem 0340, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.
引用
收藏
页数:10
相关论文
共 50 条