On additive transformations preserving a multiplicative matrix function

被引:0
|
作者
Zheng, Baodong [1 ]
Zhang, Yang [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
preserve; multiplicative function;
D O I
10.1016/j.amc.2006.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M,(K) be the ring of all n x n matrices over a division ring K, and f be a multiplicative matrix function from M-n(K) to a multiplicative Abelian group with zero G boolean OR {0} (f (AB) = f (A)f (B),for all A, B is an element of M-n(K)). We call an additive transformation phi on M-n(K) preserves a multiplicative matrix function f, if f (phi(A)) = f (A), for all A is an element of M-n(K). In this paper, we characterize all additive surjective transformations on M-n(K) over any division ring K (chK not equal 2) that leave a non-trivial multiplicative matrix function invariant. Applications to several related preservers are considered. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1402 / 1409
页数:8
相关论文
共 50 条