Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring

被引:0
|
作者
Cojocaru, Alina Carmen [1 ,2 ]
Jones, Nathan [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St,322 SEO, Chicago, IL 60607 USA
[2] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St,Sect 1, Bucharest 010702, Romania
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2021年 / 33卷 / 01期
关键词
Elliptic curves; Drinfeld modules; division fields; Galois representations; DRINFELD MODULES; POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a global field, let A be a Dedekind domain with Quot(A) = k, and let K be a finitely generated field. Using a unified approach for both elliptic curves and Drinfeld modules M that are defined over K and that have a trivial endomorphism ring, with k = Q, A = Z in the former case and with k a global function field, A its ring of functions regular away from a fixed prime in the latter case, we prove, for any nonzero ideal a . A, best possible estimates in the norm vertical bar a vertical bar for the degree over K of the subfield of the a-division field of M fixed by the scalars.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 9 条