Measurement of Rat Brain Tumor Kinetics Using an Intravascular MR Contrast Agent and DCE-MRI Nested Model Selection

被引:12
|
作者
Chwang, Wilson B. [1 ]
Jain, Rajan [1 ,2 ,3 ]
Bagher-Ebadian, Hassan [1 ,4 ,5 ]
Nejad-Davarani, Siamak P. [5 ,6 ]
Iskander, A. S. M. [1 ]
VanSlooten, Ashley [7 ]
Schultz, Lonni [2 ,7 ]
Arbab, Ali S. [1 ]
Ewing, James R. [4 ,5 ,6 ]
机构
[1] Henry Ford Hosp, Dept Radiol, Detroit, MI 48202 USA
[2] Henry Ford Hosp, Dept Neurosurg, Detroit, MI 48202 USA
[3] NYU, Div Neuroradiol, Langone Med Ctr, New York, NY 10016 USA
[4] Henry Ford Hosp, Dept Neurol, Detroit, MI 48202 USA
[5] Oakland Univ, Dept Phys, Rochester, MI USA
[6] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[7] Henry Ford Hosp, Dept Publ Hlth Sci, Detroit, MI 48202 USA
关键词
gadofosveset; gadopentetate; DCE-MRI; contrast agent; INITIAL-EXPERIENCE; PROTEIN-BINDING; GLIOBLASTOMA; PERMEABILITY; TARGETS; ALBUMIN; MS-325; SPACE;
D O I
10.1002/jmri.24469
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a rat glioma model, and nested model selection (NMS), to compare estimates of the pharmacokinetic parameters v(p), K-trans, and ve for two different contrast agents (CAs)-gadofosveset, which reversibly binds to human serum albumin, and gadopentetate dimeglumine, which does not. Materials and Methods: DCE-MRI studies were performed on nine Fisher 344 rats inoculated intracerebrally with 9L gliosarcoma cells using both gadofosveset and gadopentetate. The parameters v(p), K-trans, and v(e) were estimated using NMS. Results: K-trans estimates using gadofosveset, compared to gadopentetate, differed in their means (gadofosveset 0.025 +/- 0.008 min(-1) vs. gadopentetate 0.046 +/- 0.011 min(-1); P = 0.0039). This difference notwithstanding, the intraclass correlation coefficient (ICC) for the two estimates of K trans showed nearly perfect linear dependence (ICC = 0.8479 by Pearson's r). Other estimates, v(e) (gado-fosveset 22.7 6 4.7% v(s). gadopentetate 23.6 6 5.6%; P = 0.4258) and v(p) (gadofosveset 1.5 6 0.5% vs. gadopente-tate 1.6 6 0.4%; P = 0.25), were not different in their means between the two CAs, and there was almost perfect agreement for ve (ICC = 0.8798) and substantial agreement for vp (ICC = 0.7981) between the two CAs. Conclusion: Estimates of K trans were statistically different using gadofosveset and gadopentetate, whereas ve and vp were similar with two CAs. NMS produced robust estimates of pharmacokinetic parameters using DCE-MRI that show promise as important measures of tumor physiology and microenvironment.
引用
收藏
页码:1223 / 1229
页数:7
相关论文
共 50 条
  • [1] Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis
    Bhandari, A.
    Bansal, A.
    Singh, A.
    Sinha, N.
    [J]. JOURNAL OF BIOMECHANICS, 2017, 59 : 80 - 89
  • [2] Model selection for analysis of dynamic contrast enhanced MRI (DCE-MRI) data.
    Yankeelov T
    Welch E B
    Chakravarthy B
    Lee R
    Freehardt D
    Mayer, I
    Meszoely, I
    Kelly M
    Means-Powell J
    Gore J
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2007, 106 : S45 - S45
  • [3] Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles
    Das, Ayesha Bharadwaj
    Tranos, James Andrew
    Zhang, Jin
    Wadghiri, Youssef Zaim
    Kim, Sungheon Gene
    [J]. INVESTIGATIVE RADIOLOGY, 2022, 57 (05) : 343 - 351
  • [4] Study of Perfusion Kinetics in Human Brain Tumor Using Leaky Tracer Kinetic Model of DCE-MRI Data and CFD
    Bhandari, A.
    Bansal, A.
    Singh, A.
    Sinha, N.
    [J]. ADVANCED COMPUTATIONAL METHODS IN LIFE SYSTEM MODELING AND SIMULATION, LSMS 2017, PT I, 2017, 761 : 63 - 73
  • [5] Reproducibility and Comparison of DCE-MRI and DCE-CT Perfusion Parameters in a Rat Tumor Model
    Ng, Chaan S.
    Waterton, John C.
    Kundra, Vikas
    Brammer, David
    Ravoori, Murali
    Han, Lin
    Wei, Wei
    Klumpp, Sherry
    Johnson, Valen E.
    Jackson, Edward F.
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (03) : 279 - 288
  • [6] Renal DCE-MRI Model Selection Using Bayesian Probability Theory
    Beeman, Scott C.
    Osei-Owusu, Patrick
    Duan, Chong
    Engelbach, John
    Bretthorst, G. Larry
    Ackerman, Joseph J. H.
    Blumer, Kendall J.
    Garbow, Joel R.
    [J]. TOMOGRAPHY, 2015, 1 (01) : 61 - 68
  • [7] Monitoring Combretastatin A4-Induced Tumor Hypoxia and Hemodynamic Changes Using Endogenous MR Contrast and DCE-MRI
    Colliez, Florence
    Fruytier, Anne-Catherine
    Magat, Julie
    Neveu, Marie-Aline
    Cani, Patrice D.
    Gallez, Bernard
    Jordan, Benedicte F.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (02) : 866 - 872
  • [8] Comparison of DCE-MRI of murine model cancers with a low dose and high dose of contrast agent
    Zhou, Xueyan
    Fan, Xiaobing
    Mustafi, Devkumar
    Pineda, Federico
    Markiewicz, Erica
    Zamora, Marta
    Sheth, Deepa
    Olopade, Olufunmilayo, I
    Oto, Aytekin
    Karczmar, Gregory S.
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 81 : 31 - 39
  • [9] Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI
    Zhang, Jin
    Winters, Kerryanne
    Kiser, Karl
    Baboli, Mehran
    Kim, Sungheon Gene
    [J]. PLOS ONE, 2020, 15 (06):
  • [10] Relating Doses of Contrast Agent Administered to TIC and Semi-Quantitative Parameters on DCE-MRI: Based on a Murine Breast Tumor Model
    Wu, Menglin
    Lu, Li
    Zhang, Qi
    Guo, Qi
    Zhao, Feixiang
    Li, Tongwei
    Zhang, Xuening
    [J]. PLOS ONE, 2016, 11 (02):