WEYL MANIFOLD: A QUANTIZED SYMPLECTIC MANIFOLD

被引:0
|
作者
Yoshioka, Akira [1 ]
Kanazawa, Tomoyo [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Kagurazaka1-3, Tokyo 1628601, Japan
关键词
Deformation quantization; quantized symplectic manifold; star products; Weyl manifold; DEFORMATIONS;
D O I
10.7546/giq-17-2016-392-401
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a brief review on Weyl manifold as a quantization of symplectic manifold, equipped with a system of quantized canonical charts and quantized canonical transformations among them called Weyl diffeomorphism. Weyl manifold is deeply related to deformation quantization on symplectic manifolds. We explain a relation between Weyl manifolds and deformation quantization.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 50 条
  • [1] Smooth maps of a foliated manifold in a symplectic manifold
    Mahuya Datta
    Md Rabiul Islam
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 333 - 343
  • [2] Smooth maps of a foliated manifold in a symplectic manifold
    Datta, Mahuya
    Islam, Md Rabiul
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03): : 333 - 343
  • [3] Immersions in a symplectic manifold
    Mahuya Datta
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 137 - 149
  • [4] Immersions in a symplectic manifold
    Datta, M
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (02): : 137 - 149
  • [5] Quantization of a symplectic manifold associated to a manifold with projective structure
    Biswas, Indranil
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [6] ON SOME SUBMERSIONS FROM A SYMPLECTIC MANIFOLD ONTO A POISSON MANIFOLD
    COSTE, A
    SONDAZ, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (16): : 583 - 585
  • [7] REPRESENTING TRIPLES OF A SYMPLECTIC MANIFOLD
    KARRER, G
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 86 (03) : 370 - 374
  • [8] THE L∞-ALGEBRA OF A SYMPLECTIC MANIFOLD
    Janssens, Bas
    Ryvkin, Leonid
    Vizman, Cornelia
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2021, 314 (01) : 81 - 98
  • [9] AFFINE GROUP AS SYMPLECTIC MANIFOLD
    BORDEMANN, M
    MEDINA, A
    OUADFEL, A
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (03) : 423 - 436
  • [10] SYMPLECTIC STRUCTURE OF THE COLLECTIVE MANIFOLD
    BULGAC, A
    [J]. PHYSICAL REVIEW C, 1989, 40 (06): : 2840 - 2843