Multimodal Integration of fMRI and EEG Data for High Spatial and Temporal Resolution Analysis of Brain Networks

被引:22
|
作者
Mantini, D. [1 ,2 ,3 ]
Marzetti, L. [1 ,2 ]
Corbetta, M. [1 ,2 ,4 ,5 ]
Romani, G. L. [1 ,2 ]
Del Gratta, C. [1 ,2 ]
机构
[1] Univ G dAnnunzio, ITAB Inst Adv Biomed Technol, I-66013 Chieti, Italy
[2] Univ G DAnnunzio, Dept Clin Sci & Bioimaging, Chieti, Italy
[3] Katholieke Univ Leuven, Sch Med, Lab Neuropsychophysiol, Leuven, Belgium
[4] Washington Univ, Dept Neurol, St Louis, MO USA
[5] Washington Univ, Dept Radiol, St Louis, MO USA
关键词
EEG; fMRI; Independent component analysis; P300; Target detection; Visual oddball task; EVENT-RELATED POTENTIALS; ARTIFACT REMOVAL; BLIND SEPARATION; TARGET; ATTENTION; MEG;
D O I
10.1007/s10548-009-0132-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli, respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes.
引用
下载
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [1] Multimodal Integration of fMRI and EEG Data for High Spatial and Temporal Resolution Analysis of Brain Networks
    D. Mantini
    L. Marzetti
    M. Corbetta
    G. L. Romani
    C. Del Gratta
    Brain Topography, 2010, 23 : 150 - 158
  • [2] Integration of EEG/MEG with MRI and fMRI - High-resolution, multimodal neuroimaging
    Liu, Zhongming
    Ding, Lei
    He, Bin
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2006, 25 (04): : 46 - 53
  • [3] Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function
    Babiloni, F
    Cincotti, F
    Babiloni, C
    Carducci, F
    Mattia, D
    Astolfi, L
    Basilisco, A
    Rossini, PM
    Ding, L
    Ni, Y
    Cheng, J
    Christine, K
    Sweeney, J
    He, B
    NEUROIMAGE, 2005, 24 (01) : 118 - 131
  • [4] Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI
    Yuan, Han
    Ding, Lei
    Zhu, Min
    Zotev, Vadim
    Phillips, Raquel
    Bodurka, Jerzy
    BRAIN CONNECTIVITY, 2016, 6 (02) : 122 - 135
  • [5] Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle
    Babiloni, F
    Mattia, D
    Babiloni, C
    Astolfi, L
    Salinari, S
    Basilisco, A
    Rossini, PM
    Marciani, MG
    Cincotti, F
    MAGNETIC RESONANCE IMAGING, 2004, 22 (10) : 1471 - 1476
  • [6] Simultaneous EEG-fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration
    Giulia Lioi
    Claire Cury
    Lorraine Perronnet
    Marsel Mano
    Elise Bannier
    Anatole Lécuyer
    Christian Barillot
    Scientific Data, 7
  • [7] Simultaneous EEG-fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration
    Lioi, Giulia
    Cury, Claire
    Perronnet, Lorraine
    Mano, Marsel
    Bannier, Elise
    Lecuyer, Anatole
    Barillot, Christian
    SCIENTIFIC DATA, 2020, 7 (01)
  • [8] Multimodal integration of fNIRS, fMRI and EEG neuroimaging
    Muthalib, Makii
    Anwar, Abdul R.
    Perrey, Stephane
    Dat, Marco
    Galka, Andreas
    Wolff, Stephan
    Heute, Ulrich
    Deuschl, Gunther
    Raethjen, Jan
    Muthuraman, Muthuraman
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (10) : 2060 - 2062
  • [9] Dyslexia:: the possible benefit of multimodal integration of fMRI- and EEG-data
    Grünling, C
    Ligges, M
    Huonker, R
    Klingert, M
    Mentzel, HJ
    Rzanny, R
    Kaiser, WA
    Witte, H
    Blanz, B
    JOURNAL OF NEURAL TRANSMISSION, 2004, 111 (07) : 951 - 969
  • [10] Dyslexia: the possible benefit of multimodal integration of fMRI- and EEG-data
    C. Grünling
    M. Ligges
    R. Huonker
    M. Klingert
    H.-J. Mentzel
    R. Rzanny
    W. A. Kaiser
    H. Witte
    B. Blanz
    Journal of Neural Transmission, 2004, 111 : 951 - 969