ENDOTRIVIAL MODULES FOR FINITE GROUPS VIA HOMOTOPY THEORY

被引:6
|
作者
Grodal, Jesper [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
HYPERGRAPH MATCHING COMPLEXES; ENDO-PERMUTATION MODULES; P-SUBGROUP COMPLEX; QUILLEN COMPLEX; SIMPLE CONNECTIVITY; CLASSIFYING-SPACES; IDEMPOTENT MODULES; WEIGHT CONJECTURE; LOCAL SUBGROUPS; HOMOLOGY;
D O I
10.1090/jams/994
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classifying endotrivial -modules, i.e., elements of the Picard group of the stable module category for an arbitrary finite group , has been a long-running quest. By deep work of Dade, Alperin, Carlson, Thévenaz, and others, it has been reduced to understanding the subgroup consisting of modular representations that split as the trivial module direct sum a projective module when restricted to a Sylow -subgroup. In this paper we identify this subgroup as the first cohomology group of the orbit category on non-trivial -subgroups with values in the units , viewed as a constant coefficient system. We then use homotopical techniques to give a number of formulas for this group in terms of the abelianization of normalizers and centralizers in , in particular verifying the Carlson–Thévenaz conjecture—this reduces the calculation of this group to algorithmic calculations in local group theory rather than representation theory. We also provide strong restrictions on when such representations of dimension greater than one can occur, in terms of the -subgroup complex and -fusion systems. We immediately recover and extend a large number of computational results in the literature, and further illustrate the computational potential by calculating the group in other sample new cases, e.g., for the Monster at all primes. © 2022 American Mathematical Society.
引用
收藏
页码:177 / 250
页数:74
相关论文
共 50 条
  • [1] Endotrivial modules for finite groups of Lie type
    Carlson, Jon F.
    Mazza, Nadia
    Nakano, Daniel K.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 595 : 93 - 119
  • [2] Endotrivial modules for finite groups of Lie type A in nondefining characteristic
    Carlson, Jon F.
    Mazza, Nadia
    Nakano, Daniel K.
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (1-2) : 1 - 24
  • [3] Endotrivial modules for finite groups of Lie type A in nondefining characteristic
    Jon F. Carlson
    Nadia Mazza
    Daniel K. Nakano
    Mathematische Zeitschrift, 2016, 282 : 1 - 24
  • [4] TORSION FREE ENDOTRIVIAL MODULES FOR FINITE GROUPS OF LIE TYPE
    Carlson, Jon F.
    Grodal, Jesper
    Mazza, Nadia
    Nakano, Daniel K.
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 317 (02) : 239 - 274
  • [5] ENDOTRIVIAL MODULES FOR THE SYMMETRIC AND ALTERNATING GROUPS
    Carlson, Jon F.
    Mazza, Nadia
    Nakano, Daniel K.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 45 - 66
  • [6] Endotrivial modules for finite group schemes
    Carlson, Jon F.
    Nakano, Daniel K.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 653 : 149 - 178
  • [7] THE GROUP OF ENDOTRIVIAL MODULES FOR THE SYMMETRIC AND ALTERNATING GROUPS
    Carlson, Jon F.
    Hemmer, David J.
    Mazza, Nadia
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 83 - 95
  • [8] Endotrivial modules for the sporadic simple groups and their covers
    Lassueur, Caroline
    Mazza, Nadia
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 4203 - 4228
  • [9] ENDOTRIVIAL MODULES FOR p-SOLVABLE GROUPS
    Carlson, Jon F.
    Mazza, Nadia
    Thevenaz, Jacques
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (09) : 4979 - 4996
  • [10] ENDOTRIVIAL MODULES FOR FINITE GROUP SCHEMES II
    Carlson, Jon F.
    Nakano, Daniel K.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2012, 7 (02): : 271 - 289