AQuRo: A Cat-like Adaptive Quadruped Robot With Novel Bio-Inspired Capabilities

被引:16
|
作者
Saputra, Azhar Aulia [1 ]
Takesue, Naoyuki [1 ]
Wada, Kazuyoshi [1 ]
Ijspeert, Auke Jan [2 ]
Kubota, Naoyuki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Syst Design, Hino, Tokyo, Japan
[2] Sch Engn, Inst Bioengn, Biorobot Lab, Lausanne, Switzerland
来源
基金
日本学术振兴会;
关键词
quadruped robot; bio-inspired model; neural-based locomotion; internal-external sensory information; novel capabilities; CENTRAL PATTERN GENERATOR; WALKING; LOCOMOTION; DESIGN; CONTROLLER; FEEDBACK; CPG;
D O I
10.3389/frobt.2021.562524
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
There are currently many quadruped robots suited to a wide range of applications, but traversing some terrains, such as vertical ladders, remains an open challenge. There is still a need to develop adaptive robots that can walk and climb efficiently. This paper presents an adaptive quadruped robot that, by mimicking feline structure, supports several novel capabilities. We design a novel paw structure and several point-cloud-based sensory structures incorporating a quad-composite time-of-flight sensor and a dual-laser range finder. The proposed robot is equipped with physical and cognitive capabilities which include: 1) a dynamic-density topological map building with attention model, 2) affordance perception using the topological map, and 3) a neural-based locomotion model. The novel capabilities show strong integration between locomotion and internal-external sensory information, enabling short-term adaptations in response to environmental changes. The robot performed well in several situations: walking on natural terrain, walking with a leg malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider current problems and future development.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Novel Bio-inspired Quadruped Crawling Robot with Movable Waist
    Wang, Ruiqin
    Wu, Hao
    Dai, Jian S.
    2024 6TH INTERNATIONAL CONFERENCE ON RECONFIGURABLE MECHANISMS AND ROBOTS, REMAR 2024, 2024, : 218 - 223
  • [2] Leg prototype of a bio-inspired quadruped robot
    Guo, W. (for0207@126.com), 1600, Chinese Academy of Sciences (36):
  • [3] A Bio-Inspired Quadruped Robot with a Global Compliant Spine
    Zhang, Xiuli
    Yu, Hongbo
    Liu, Boyu
    Gu, Xiaoxu
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 1312 - 1316
  • [4] Design of a Bio-inspired Quadruped Robot with Scalable Torso
    Liu, Yixiang
    Bi, Qing
    Li, Yibin
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 455 - 460
  • [5] A Bio-Inspired Control Strategy for Locomotion of a Quadruped Robot
    Zeng, Yinquan
    Li, Junmin
    Yang, Simon X.
    Ren, Erwei
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [6] Bio-inspired Knee Joint Mechanism for a Hydraulic Quadruped Robot
    Khan, Hamza
    Featherstone, Roy
    Caldwell, Darwin G.
    Semini, Claudio
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA), 2015, : 325 - 331
  • [7] Design, Dynamic Modeling and Fabrication of a Bio-Inspired Quadruped Robot
    Nikkhah, Arman
    Yousefi-Koma, Aghil
    Keshavarz, Hossein
    Mohtasebi, Seyed Saeid
    2015 3RD RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2015, : 593 - 599
  • [8] A Bio-Inspired Implementation of Walking and Stair Climbing on a Quadruped Robot
    Sarmah, Anurag Narayan
    Boruah, Abhijit
    Kalita, Daisy
    Neog, Darshana
    Paul, Saumay
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 671 - 677
  • [9] Pegasus: a Novel Bio-inspired Quadruped Robot with Underactuated Wheeled-Legged Mechanism
    Pan, Yuzhen
    Khan, Rezwan Al Islam
    Zhang, Chenyun
    Zhang, Anzheng
    Shang, Huiliang
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 1464 - 1469
  • [10] Bio-inspired adaptive control strategy for a snake-like robot
    Jatsun, Sergey
    Vorochaeva, Ludmila
    Yatsun, Andrey
    Savin, Sergei
    Malchikov, Andrei
    2015 19TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2015, : 273 - 278