Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D

被引:20
|
作者
Beilina, Larisa [1 ,2 ]
Klibanov, Michael V. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-42196 Gothenburg, Sweden
[2] Gothenburg Univ, SE-42196 Gothenburg, Sweden
[3] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
来源
关键词
Two-stage numerical procedure; globally convergent numerical method; adaptive finite element method; RECONSTRUCTION;
D O I
10.1515/JIIP.2010.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A globally convergent numerical method for a 3-Dimensional Coefficient Inverse Problem for a hyperbolic equation is presented. A new globally convergent theorem is proven. It is shown that this technique provides a good first guess for the Finite Element Adaptive method (adaptivity) method. This leads to a synthesis of both approaches. Numerical results are presented.
引用
收藏
页码:85 / 132
页数:48
相关论文
共 50 条