Functional local law of the iterated logarithm for geometrically weighted random series

被引:4
|
作者
Stoica, G [1 ]
机构
[1] Univ New Brunswick, Dept Math Sci, St John, NB E2L 4L5, Canada
关键词
geometrically weighted random series; functional local law of the iterated logarithm; moderate deviation principle; rate of convergence;
D O I
10.1016/S0167-7152(02)00426-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper proves a functional local law of the iterated logarithm and a moderate deviation principle for properly normalized geometrically weighted random series of centered independent normal real random variables with variances satisfying Kolmogorov's conditions. The methodology used here allows an unified treatment, extends and gives the exact rate of convergence in the pointwise laws previously proved by Zhang (Ann. Probab. 25 (1997) 1621) and Bovier and Picco (Ann. Probab. 21 (1993) 168). (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条