Degree versions of the Erdos-Ko-Rado theorem and Erdos hypergraph matching conjecture

被引:11
|
作者
Huang, Hao [1 ]
Zhao, Yi [2 ]
机构
[1] Emory Univ, Dept Math & CS, Atlanta, GA 30322 USA
[2] Georgia State Univ, Dept Math, Atlanta, GA 30302 USA
基金
美国国家科学基金会;
关键词
Degree version; Hypergraph matching; Algebraic method; INTERSECTION-THEOREMS; UNIFORM HYPERGRAPHS; MAXIMUM NUMBER; FINITE SETS; EDGES; SYSTEMS; SIZE;
D O I
10.1016/j.jcta.2017.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an algebraic method to prove a degree version of the celebrated Erdos-Ko-Rado theorem: given n > 2k, every intersecting k-uniform hypergraph H on n vertices contains a vertex that lies on at most ((k-2) (n-2)) edges. This result implies the Erdos-Ko-Rado Theorem as a corollary. It can also be viewed as a special case of the degree version of a well-known conjecture of Erdds on hypergraph matchings. Improving the work of Bollobas, Daykin, and Erdds from 1976, we show that, given integers n, k, s with n >= 3k(2)s, every k-uniform hypergraph H on n vertices with minimum vertex degree greater than ((k-1) (n-1))- ((k-1) (n-s)) contains s disjoint edges. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 50 条
  • [1] ERDOS-KO-RADO THEOREM WITH CONDITIONS ON THE MAXIMAL DEGREE
    FRANKL, P
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 46 (02) : 252 - 263
  • [2] An Erdos-Ko-Rado theorem for multisets
    Meagher, Karen
    Purdy, Alison
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [3] A generalization of the Erdos-Ko-Rado theorem
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    Taherkhani, Ali
    [J]. DISCRETE MATHEMATICS, 2010, 310 (01) : 188 - 191
  • [4] On the stability of the Erdos-Ko-Rado theorem
    Bollobas, Bela
    Narayanan, Bhargav P.
    Raigorodskii, Andrei M.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 137 : 64 - 78
  • [5] BEYOND THE ERDOS-KO-RADO THEOREM
    FRANKL, P
    FUREDI, Z
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 56 (02) : 182 - 194
  • [6] A generalization of the Erdos-Ko-Rado theorem
    Hegedus, Gabor
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 256 - 264
  • [7] A BIPARTITE ERDOS-KO-RADO THEOREM
    SIMPSON, JE
    [J]. DISCRETE MATHEMATICS, 1993, 113 (1-3) : 277 - 280
  • [8] ON ''STABILITY" IN THE ERDOS-KO-RADO THEOREM
    Devlin, Pat
    Kahn, Jeff
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1283 - 1289
  • [9] Extending the Erdos-Ko-Rado theorem
    Tokushige, N
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (01) : 52 - 55
  • [10] On the Stability of the Erdos-Ko-Rado Theorem
    Pyaderkin, M. M.
    [J]. DOKLADY MATHEMATICS, 2015, 91 (03) : 290 - 293