Covering the plane with fat ellipses without non-crossing assumption

被引:4
|
作者
Heppes, A
机构
[1] Vércse u 24/A,
[2] 1124 Budapest,undefined
[3] Hungary hep9202@helka.iif.hu ,undefined
关键词
Congruent Circle;
D O I
10.1007/s00454-002-2835-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kershner proved in 1939 that the density of a covering of the plane by congruent circles is at least 2pi/root27 [3]. In 1950 L. Fejes Toth [2] extended this result showing that the same density bound holds for coverings with congruent ellipses which do not "cross". In the present paper we prove that the non-crossing assumption is not necessary if the ellipses are sufficiently "fat".
引用
收藏
页码:477 / 481
页数:5
相关论文
共 50 条
  • [1] Covering the Plane with Fat Ellipses without Non-Crossing Assumption
    Discrete & Computational Geometry, 2003, 29 : 477 - 481
  • [2] Bottleneck Non-crossing Matching in the Plane
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    Trabelsi, Yohai
    ALGORITHMS - ESA 2012, 2012, 7501 : 36 - 47
  • [3] Long Non-crossing Configurations in the Plane
    Adrian Dumitrescu
    Csaba D. Tóth
    Discrete & Computational Geometry, 2010, 44 : 727 - 752
  • [4] Long Non-crossing Configurations in the Plane
    Dumitrescu, Adrian
    Toth, Csaba D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 727 - 752
  • [5] Bottleneck non-crossing matching in the plane
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    Trabelsi, Yohai
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (03): : 447 - 457
  • [6] LONG NON-CROSSING CONFIGURATIONS IN THE PLANE
    Dumitrescu, Adrian
    Toth, Csaba D.
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 311 - 322
  • [7] Shortest Non-Crossing Walks in the Plane
    Erickson, Jeff
    Nayyeri, Amir
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 297 - 308
  • [8] Long non-crossing configurations in the plane
    Alon, N.
    Rajagopalan, S.
    Suri, S.
    Fundamenta Informaticae, 1995, 22 (04):
  • [9] Covering a plane with ellipses
    Erzin, A. I.
    Astrakov, S. N.
    OPTIMIZATION, 2013, 62 (10) : 1357 - 1366
  • [10] Non-crossing frameworks with non-crossing reciprocals
    Orden, D
    Rote, G
    Santos, F
    Servatius, B
    Servatius, H
    Whiteley, W
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) : 567 - 600