3D-printable lung substitutes for particle therapy on the base of high-resolution CTs for mimicking Bragg peak degradation

被引:2
|
作者
Baumann, Kilian [1 ,3 ]
Weber, Ulrich [2 ]
Fiebich, Martin [3 ,4 ]
Zink, Klemens [3 ,5 ,6 ]
Maeder, Ulf [3 ]
机构
[1] Univ Med Ctr Giessen & Marburg, Baldingerstr, D-35043 Marburg, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
[3] Tech Hsch Mittelhessen, Inst Med Phys & Radiat Protect, Wiesenstr 14, D-35390 Giessen, Germany
[4] Univ Med Ctr Giessen & Marburg, Dept Radiol, Baldingerstr, D-35043 Marburg, Germany
[5] Univ Med Ctr Giessen & Marburg, Dept Radiotherapy & Radiat Oncol, Baldingerstr, D-35043 Marburg, Germany
[6] Goethe Univ, FIAS, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
关键词
Particle Therapy; Bragg peak degradation; 3D-printable lung substitute; TISSUE;
D O I
10.1117/12.2512742
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In particle therapy sub-millimeter sized heterogeneities like lung tissue cause a Bragg peak degradation, which should be considered in treatment planning to ensure an optimal dose distribution in tumor tissue. To determine the magnitude of this degradation extensive experiments could be carried out. More convenient and reproducible is the use of our mathematical model to describe the degradation properties of lung tissue and to design 3D-printable substitutes based on high-resolution CT images of human lung samples. High-resolution CT images of human lung samples (resolution: 4 mu m) were used to create binary cubic datasets with voxels corresponding to either air or lung tissue. The number of tissue voxels is calculated along the z-axis for every lateral position. This represents the "tissue length" for all particle paths through the dataset of a parallel beam. The square based lung substitute is divided into columns with different heights corresponding to the occurring tissue lengths. The columns lateral extend complies with the quantity of the corresponding tissue lengths present in the dataset. The lung substitutes were validated by Monte Carlo simulations with the Monte Carlo toolkit TOPAS. The Monte Carlo simulations proved that the depth dose distributions and hence the Bragg peak degradations of the lung substitutes mimics the degradation of the corresponding lung tissue sample.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] 3D-printable lung phantom for distal falloff verification of proton Bragg peak
    Koketsu, Junichi
    Kumada, Hiroaki
    Takada, Kenta
    Takei, Hideyuki
    Mori, Yutaro
    Kamizawa, Satoshi
    Hu, Yuchao
    Sakurai, Hideyuki
    Sakae, Takeji
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (09): : 86 - 94
  • [2] Development of high-resolution 3D printable polymerizable ionic liquids for antimicrobial applications
    Miralles-Comins, Sara
    Zanatta, Marcileia
    Embid, Sonia Garcia
    Alleva, Maria
    Chiappone, Annalisa
    Roppolo, Ignazio
    Mitchell, Scott G.
    Sans, Victor
    DEVICE, 2024, 2 (02):
  • [3] FEASIBILITY OF HIGH-RESOLUTION, 3D, EM PARTICLE SIMULATIONS
    BUNEMAN, O
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1094 - 1094
  • [4] On the Significance of Motion Degradation in High-resolution 3D μMRI of Trabecular Bone
    Bhagat, Yusuf A.
    Rajapakse, Chamith S.
    Magland, Jeremy F.
    Wald, Michael J.
    Song, Hee Kwon
    Leonard, Mary B.
    Wehrli, Felix W.
    ACADEMIC RADIOLOGY, 2011, 18 (10) : 1205 - 1216
  • [5] High-resolution 3D imaging of intracranial aneurysms for preoperative therapy planning
    Tomandi, BF
    Eberhardt, KE
    Hastreiter, P
    Rezk-Salama, C
    Nimsky, C
    Huk, WJ
    RADIOLOGY, 2000, 217 : 178 - 178
  • [6] High-resolution 3D printable inks based on functional polymeric ionic liquids for applications in carbon dioxide valorization
    Marchetti, Simone
    Tinajero, Cristopher
    Palmara, Gianluca
    Garcia-Verdugo, Eduardo
    Roppolo, Ignazio
    Zanatta, Marcileia
    Sans, Victor
    ADDITIVE MANUFACTURING, 2024, 89
  • [7] A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions
    Wells, Gordon
    Glasgow, Joel N.
    Nargan, Kievershen
    Lumamba, Kapongo
    Madansein, Rajhmun
    Maharaj, Kameel
    Perumal, Leon Y.
    Matthew, Malcolm
    Hunter, Robert L.
    Pacl, Hayden
    Lever, Jacelyn E. Peabody
    Stanford, Denise D.
    Singh, Satinder P.
    Bajpai, Prachi
    Manne, Upender
    Benson, Paul, V
    Rowe, Steven M.
    le Roux, Stephan
    Sigal, Alex
    Tshibalanganda, Muofhe
    Wells, Carlyn
    du Plessis, Anton
    Msimang, Mpumelelo
    Naidoo, Threnesan
    Steyn, Adrie J. C.
    EMBO MOLECULAR MEDICINE, 2022, 14 (11)
  • [8] UTE-SENCEFUL: first results for 3D high-resolution lung ventilation imaging
    Pereira, L. Mendes
    Wech, T.
    Weng, A. M.
    Kestler, C.
    Veldhoen, S.
    Bley, T. A.
    Koestler, H.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (04) : 2464 - 2473
  • [9] High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
    Chen, Shaoxia
    McMullan, Greg
    Faruqi, Abdul R.
    Murshudov, Garib N.
    Short, Judith M.
    Scheres, Sjors H. W.
    Henderson, Richard
    ULTRAMICROSCOPY, 2013, 135 : 24 - 35
  • [10] 3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials
    Domingo-Roca, Roger
    Gilmour, Lauren
    Dobre, Oana
    Sarrigiannidis, Stylianos
    Sandison, Mairi E.
    O'Leary, Richard
    Jackson-Camargo, Joseph C.
    Mulvana, Helen E.
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (05) : 1101 - 1109