giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration

被引:0
|
作者
Tauzin, Guillaume [1 ]
Lupo, Umberto [2 ]
Tunstall, Lewis [2 ]
Perez, Julian Burella [3 ]
Caorsi, Matteo [2 ]
Medina-Mardones, Anibal M. [1 ]
Dassatti, Alberto [3 ]
Hess, Kathryn [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Topol & Neurosci, Lausanne, Switzerland
[2] L2F SA, Lausanne, Switzerland
[3] HES SO, Sch Management & Engn Vaud, Yverdon, Switzerland
关键词
Topological Data Analysis; Persistent Homology; Mapper; Machine Learning; Data Exploration; !text type='Python']Python[!/text;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce giotto-tda, a Python library that integrates high-performance topological data analysis with machine learning via a scikit-learn {compatible API and state-of-the-art C++ implementations. The library's ability to handle various types of data is rooted in a wide range of preprocessing techniques, and its strong focus on data exploration and interpretability is aided by an intuitive plotting API. Source code, binaries, examples, and documentation can be found at https://github.com/giotto-ai/giotto-tda
引用
收藏
页数:6
相关论文
共 50 条
  • [1] giotto-tda: A topological data analysis toolkit for machine learning and data exploration
    Tauzin, Guillaume
    Lupo, Umberto
    Tunstall, Lewis
    Perez, Julian Burella
    Caorsi, Matteo
    Medina-Mardones, Anibal M.
    Dassatti, Alberto
    Hess, Kathryn
    [J]. Journal of Machine Learning Research, 2021, 22
  • [2] Topological data analysis and machine learning
    Leykam, Daniel
    Angelakis, Dimitris G.
    [J]. ADVANCES IN PHYSICS-X, 2023, 8 (01):
  • [3] BrainSort: a Machine Learning Toolkit for Brain Connectome Data Analysis and Visualization
    Miaomiao Liu
    Tiantian Liu
    Yonghao Wang
    Yuan Feng
    Yunyan Xie
    Tianyi Yan
    Jinglong Wu
    [J]. Journal of Signal Processing Systems, 2022, 94 : 485 - 495
  • [4] BrainSort: a Machine Learning Toolkit for Brain Connectome Data Analysis and Visualization
    Liu, Miaomiao
    Liu, Tiantian
    Wang, Yonghao
    Feng, Yuan
    Xie, Yunyan
    Yan, Tianyi
    Wu, Jinglong
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (05): : 485 - 495
  • [5] Topological Data Analysis (TDA) of Allergic Sensitization in Bronchiectasis and COPD
    Narayana, J.
    Tiew, P.
    Ang, Y.
    Quek, M.
    Ko, F. W.
    Lim, A.
    Poh, M.
    Jaggi, T.
    Xu, H.
    Koh, M.
    Low, T.
    Hassan, T.
    Ong, T.
    Keir, H.
    Tee, A.
    Abisheganaden, J.
    Aliberti, S.
    Blasi, F.
    Chalmers, J. D.
    Chew, F.
    Tsaneva-Atanasova, K.
    Chotirmall, S. H.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [6] A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA)
    Alagappan, Muthuraman
    Jiang, Dadi
    Denko, Nicholas
    Koong, Albert C.
    [J]. TUMOR MICROENVIRONMENT: STUDY PROTOCOLS, 2016, 899 : 253 - 268
  • [7] Designing machine learning workflows with an application to topological data analysis
    Cawi, Eric
    La Rosa, Patricio S.
    Nehorai, Arye
    [J]. PLOS ONE, 2019, 14 (12):
  • [8] Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis
    Akshay, Akshay
    Katoch, Mitali
    Shekarchizadeh, Navid
    Abedi, Masoud
    Sharma, Ankush
    Burkhard, Fiona C.
    Adam, Rosalyn M.
    Monastyrskaya, Katia
    Gheinani, Ali Hashemi
    [J]. GIGASCIENCE, 2024, 13
  • [9] Tslearn, A Machine Learning Toolkit for Time Series Data
    Tavenard, Romain
    Faouzi, Johann
    Vandewiele, Gilles
    Divo, Felix
    Androz, Guillaume
    Holtz, Chester
    Payne, Marie
    Yurchak, Roman
    Russwurm, Marc
    Kolar, Kushal
    Woods, Eli
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [10] A Survey of Topological Data Analysis (TDA) Methods Implemented in Python']Python
    Ray, Jeffrey
    Trovati, Marcello
    [J]. ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS, INCOS-2017, 2018, 8 : 594 - 600