Unmanned aerial vehicles (UAVs) are being integrated as an active element in 5G and beyond networks. Because of their flexibility and mobility, UAV base stations (UAV-BSs) can be deployed according to the ground user distributions and their quality-of-service (QoS) requirement. Although there has been quite some prior research on the UAV deployment, no work has studied this problem in a 3-D setting and taken into account the UAV-BS capacity limit and the QoS requirements of ground users. Therefore, in this article, we focus on the problem of deploying UAV-BSs to provide satisfactory wireless communication services, with the aim to maximize the total number of covered user equipment subject to user data-rate requirements and UAV-BSs' capacity limit. First, we model the relationship between the air-to-ground path loss (PL) and the location of UAV-BSs in both horizontal and vertical dimensions, which has not been considered in previous works. Unlike the conventional UAV deployment problem formulation, the 3-D deployment problem is decoupled into a 2-D horizontal placement and altitude determination connected by PL requirement and minimization. Then, we propose a novel genetic algorithm-based 2-D placement approach in which UAV-BSs are placed to have maximum coverage of the users with consideration of data rate distribution. Finally, numerical and simulation results show that the proposed approach has enabled a better coverage percentage comparing with other schemes.