Texture analysis for shadow removing in video-surveillance systems

被引:0
|
作者
Leone, A [1 ]
Distante, C [1 ]
Ancona, N [1 ]
Stella, E [1 ]
Siciliano, P [1 ]
机构
[1] CNR, IMM, Lecce, Italy
关键词
image processing; pattern recognition; texture analysis; frame theory;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a new approach for detecting and removing shadows from objects and pedestrians, since shadow removing is a fundamental step in video-surveillance systems for accurate object detection. In order to precisely remove the unwanted shadows, a novel approach is proposed, focused on the problem of representing texture information in terms of redundant systems of functions (frame). The method for discriminating shadows is based on the Matching Pursuit (MP) algorithm using an over-complete dictionary: the basic idea is to use W for selecting the best little set Of atoms (dictionary functions) of 2D Gabor dictionary and representing texture as linear combination of frame elements. The approach proves how W is a powerful scheme able to compactly capture detailed textural information of little regions of the image, so W decomposition coefficients can be used as an exhaustive features in the shadow points detection process. Experimental results validate the algorithm's performance.
引用
收藏
页码:6325 / 6330
页数:6
相关论文
共 50 条
  • [1] A shadow elimination approach in video-surveillance context
    Leone, A
    Distante, C
    Buccolieri, F
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (05) : 345 - 355
  • [2] THE USE OF VIDEO-SURVEILLANCE SYSTEMS TO MONITOR POLICE ACTIVITY
    Colas-Neila, Eusebi
    [J]. REVISTA GENERAL DEL DERECHO DEL TRABAJO Y DE LA SEGURIDAD SOCIAL, 2019, (54): : 319 - 334
  • [3] Performance evaluation criterion for characterizing video-surveillance systems
    Oberti, F
    Stringa, E
    Vernazza, G
    [J]. REAL-TIME IMAGING, 2001, 7 (05) : 457 - 471
  • [4] Object tracking in video-surveillance
    D. Moroni
    G. Pieri
    [J]. Pattern Recognition and Image Analysis, 2009, 19 (2) : 271 - 276
  • [5] Full-Body Occlusion Handling and Density Analysis in Traffic Video-Surveillance Systems
    Palinginis, Evangelos
    Park, Man-Woo
    Kamiya, Keitaro
    Laval, Jorge
    Brilakis, Ioannis
    Guensler, Randall
    [J]. TRANSPORTATION RESEARCH RECORD, 2014, (2460) : 58 - 65
  • [6] Video-surveillance in kindergartens: a controversial issue
    Ferrara, Pietro
    De Luca, Chiara
    Vecchio, Martina
    Franceschini, Giulia
    [J]. MINERVA PEDIATRICS, 2022, 74 (05): : 613 - 615
  • [7] Automatic target retrieval in a video-surveillance task
    Moroni, Davide
    Pieri, Gabriele
    [J]. PROCEEDINGS OF THE IMAGE MINING THEORY AND APPLICATIONS, 2008, : 113 - +
  • [8] Combined approach to face detection for video-surveillance
    Paliy, I.
    Kurylyak, Y.
    Kapura, V.
    Sachenko, A.
    Lamovsky, D.
    Sadykhov, R.
    [J]. IDAACS 2007: PROCEEDINGS OF THE 4TH IEEE WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2007, : 594 - +
  • [9] Image stabilization algorithms for video-surveillance applications
    Marcenaro, L
    Vernazza, G
    Regazzoni, CS
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 349 - 352
  • [10] SPEEDUP MULTI-CAMERA VIDEO-SURVEILLANCE SYSTEMS FOR ELDER FALLING DETECTION
    Shieh, Wann-Yun
    Lin, Ting-Yu
    Huang, Ju-Chin
    [J]. FIRST INTERNATIONAL SYMPOSIUM ON BIOENGINEERING (ISOB 2011), PROCEEDINGS, 2011, : 188 - 195