Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study

被引:34
|
作者
Yang, Xin [1 ]
Leslie, Goska [1 ]
Gentry-Maharaj, Aleksandra [2 ]
Ryan, Andy [2 ]
Intermaggio, Maria [3 ]
Lee, Andrew [1 ]
Kalsi, Jatinderpal K. [2 ]
Tyrer, Jonathan [4 ]
Gaba, Faiza [5 ]
Manchanda, Ranjit [2 ,5 ,6 ]
Pharoah, Paul D. P. [1 ,4 ]
Gayther, Simon A. [7 ,8 ]
Ramus, Susan J. [3 ,9 ]
Jacobs, Ian [2 ,10 ,11 ]
Menon, Usha [2 ]
Antoniou, Antonis C. [1 ]
机构
[1] Univ Cambridge, Dept Publ Hlth & Primary Care, Ctr Canc Genet Epidemiol, Cambridge CB1 8RN, England
[2] UCL, Inst Womens Hlth, Dept Womens Canc, London, England
[3] Univ New South Wales, Sch Womens & Childrens Hlth, Sydney, NSW, Australia
[4] Univ Cambridge, Dept Oncol, Ctr Canc Genet Epidemiol, Cambridge, England
[5] Queen Mary Univ London, Barts Canc Inst, Ctr Expt Canc Med, London, England
[6] Barts Hlth NHS Trust, Royal London Hosp, Dept Gynaecol Oncol, London, England
[7] Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Los Angeles, CA 90048 USA
[8] Cedars Sinai Med Ctr, Dept Biomed Sci, Los Angeles, CA 90048 USA
[9] Garvan Inst Med Res, Kinghorn Canc Ctr, Sydney, NSW, Australia
[10] Univ New South Wales, Sydney, NSW, Australia
[11] Univ Manchester, Manchester, Lancs, England
基金
英国医学研究理事会;
关键词
SUSCEPTIBILITY LOCI; PROSTATE-CANCER; IDENTIFICATION; ASSOCIATION; UKCTOCS; ALLELES; BREAST; BRCA2;
D O I
10.1136/jmedgenet-2018-105313
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Genome-wide association studies have identified >30 common SNPs associated with epithelial ovarian cancer (EOC). We evaluated the combined effects of EOC susceptibility SNPs on predicting EOC risk in an independent prospective cohort study. Methods We genotyped ovarian cancer susceptibility single nucleotide polymorphisms (SNPs) in a nested case-control study (750 cases and 1428 controls) from the UK Collaborative Trial of Ovarian Cancer Screening trial. Polygenic risk scores (PRSs) were constructed and their associations with EOC risk were evaluated using logistic regression. The absolute risk of developing ovarian cancer by PRS percentiles was calculated. Results The association between serous PRS and serous EOC (OR 1.43, 95% CI 1.29 to 1.58, p=1.3x10(-11)) was stronger than the association between overall PRS and overall EOC risk (OR 1.32, 95% CI 1.21 to 1.45, p=5.4x10(-10)). Women in the top fifth percentile of the PRS had a 3.4-fold increased EOC risk compared with women in the bottom 5% of the PRS, with the absolute EOC risk by age 80 being 2.9% and 0.9%, respectively, for the two groups of women in the population. Conclusion PRSs can be used to predict future risk of developing ovarian cancer for women in the general population. Incorporation of PRSs into risk prediction models for EOC could inform clinical decision-making and health management.
引用
收藏
页码:546 / 554
页数:9
相关论文
共 50 条
  • [1] Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses
    Sun, Luanluan
    Pennells, Lisa
    Kaptoge, Stephen
    Nelson, Christopher P.
    Ritchie, Scott C.
    Abraham, Gad
    Arnold, Matthew
    Bell, Steven
    Bolton, Thomas
    Burgess, Stephen
    Dudbridge, Frank
    Guo, Qi
    Sofianopoulou, Eleni
    Stevens, David
    Thompson, John R.
    Butterworth, Adam S.
    Wood, Angela
    Danesh, John
    Samani, Nilesh J.
    Inouye, Michael
    Di Angelantonio, Emanuele
    [J]. PLOS MEDICINE, 2021, 18 (01)
  • [2] Prospective Evaluation of the Addition of Polygenic Risk Scores to Breast Cancer Risk Models
    Li, Sherly X.
    Milne, Roger L.
    Nguyen-Dumont, Tu
    Wang, Xiaochuan
    English, Dallas R.
    Giles, Graham G.
    Southey, Melissa C.
    Antoniou, Antonis C.
    Lee, Andrew
    Li, Shuai
    Winship, Ingrid
    Hopper, John L.
    Terry, Mary Beth
    MacInnis, Robert J.
    [J]. JNCI CANCER SPECTRUM, 2021, 5 (03)
  • [3] Polygenic risk scores and breast cancer risk prediction
    Roberts, Eleanor
    Howell, Sacha
    Evans, D. Gareth
    [J]. BREAST, 2023, 67 : 71 - 77
  • [4] Polygenic Risk Scores for cancer mortality prediction
    Sciurti, A.
    De Blasiis, M. R.
    Bolli, A.
    Busby, G.
    [J]. EUROPEAN JOURNAL OF PUBLIC HEALTH, 2023, 33
  • [5] Development and evaluation of polygenic risk scores for prediction of endometrial cancer risk in European women
    Bafligil, Cemsel
    Thompson, Deborah J.
    Lophatananon, Artitaya
    Ryan, Neil A. J.
    Smith, Miriam J.
    Dennis, Joe
    Mekli, Krisztina
    O'Mara, Tracy A.
    Evans, D. Gareth
    Crosbie, Emma J.
    [J]. GENETICS IN MEDICINE, 2022, 24 (09) : 1847 - 1856
  • [6] Evaluation of Polygenic Risk Scores for Prediction of Prostate Cancer in Korean Men
    Oh, Jong Jin
    Kim, Eunae
    Woo, Eunjin
    Song, Sang Hun
    Kim, Jung Kwon
    Lee, Hakmin
    Lee, Sangchul
    Hong, Sung Kyu
    Byun, Seok-Soo
    [J]. FRONTIERS IN ONCOLOGY, 2020, 10
  • [7] Polygenic Risk Scores in a Prospective Parkinson's Disease Cohort
    Sia, Ming-Wei
    Foo, Jia-Nee
    Saffari, Seyed-Ehsan
    Wong, Aidan Sheng-Yong
    Khor, Chiea-Chuen
    Yuan, Jian-Min
    Tan, Eng-King
    Koh, Woon-Puay
    Tan, Louis Chew-Seng
    [J]. MOVEMENT DISORDERS, 2021, 36 (12) : 2936 - 2940
  • [8] Polygenic risk modeling for prediction of epithelial ovarian cancer risk
    Dareng, Eileen O.
    Tyrer, Jonathan P.
    Barnes, Daniel R.
    Jones, Michelle R.
    Yang, Xin
    Aben, Katja K. H.
    Adank, Muriel A.
    Agata, Simona
    Andrulis, Irene L.
    Anton-Culver, Hoda
    Antonenkova, Natalia N.
    Aravantinos, Gerasimos
    Arun, Banu K.
    Augustinsson, Annelie
    Balmana, Judith
    Bandera, Elisa, V
    Barkardottir, Rosa B.
    Barrowdale, Daniel
    Beckmann, Matthias W.
    Beeghly-Fadiel, Alicia
    Benitez, Javier
    Bermisheva, Marina
    Bernardini, Marcus Q.
    Bjorge, Line
    Black, Amanda
    Bogdanova, Natalia, V
    Bonanni, Bernardo
    Borg, Ake
    Brenton, James D.
    Budzilowska, Agnieszka
    Butzow, Ralf
    Buys, Saundra S.
    Cai, Hui
    Caligo, Maria A.
    Campbell, Ian
    Cannioto, Rikki
    Cassingham, Hayley
    Chang-Claude, Jenny
    Chanock, Stephen J.
    Chen, Kexin
    Chiew, Yoke-Eng
    Chung, Wendy K.
    Claes, Kathleen B. M.
    Colonna, Sarah
    Cook, Linda S.
    Couch, Fergus J.
    Daly, Mary B.
    Dao, Fanny
    Davies, Eleanor
    de la Hoya, Miguel
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (03) : 349 - 362
  • [9] Polygenic risk modeling for prediction of epithelial ovarian cancer risk
    Eileen O. Dareng
    Jonathan P. Tyrer
    Daniel R. Barnes
    Michelle R. Jones
    Xin Yang
    Katja K. H. Aben
    Muriel A. Adank
    Simona Agata
    Irene L. Andrulis
    Hoda Anton-Culver
    Natalia N. Antonenkova
    Gerasimos Aravantinos
    Banu K. Arun
    Annelie Augustinsson
    Judith Balmaña
    Elisa V. Bandera
    Rosa B. Barkardottir
    Daniel Barrowdale
    Matthias W. Beckmann
    Alicia Beeghly-Fadiel
    Javier Benitez
    Marina Bermisheva
    Marcus Q. Bernardini
    Line Bjorge
    Amanda Black
    Natalia V. Bogdanova
    Bernardo Bonanni
    Ake Borg
    James D. Brenton
    Agnieszka Budzilowska
    Ralf Butzow
    Saundra S. Buys
    Hui Cai
    Maria A. Caligo
    Ian Campbell
    Rikki Cannioto
    Hayley Cassingham
    Jenny Chang-Claude
    Stephen J. Chanock
    Kexin Chen
    Yoke-Eng Chiew
    Wendy K. Chung
    Kathleen B. M. Claes
    Sarah Colonna
    Linda S. Cook
    Fergus J. Couch
    Mary B. Daly
    Fanny Dao
    Eleanor Davies
    Miguel de la Hoya
    [J]. European Journal of Human Genetics, 2022, 30 : 349 - 362
  • [10] Polygenic Risk Scores: Genomes to Risk Prediction
    Hayeck, Tristan J.
    Busby, George B.
    Chun, Sung
    Lewis, Anna C. F.
    Roberts, Megan C.
    Vilhjalmsson, Bjarni J.
    [J]. CLINICAL CHEMISTRY, 2023, 69 (06) : 551 - 557