Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis

被引:225
|
作者
Deng, Qi [1 ]
Hui, Dafeng [1 ]
Dennis, Sam [2 ]
Reddy, K. Chandra [2 ]
机构
[1] Tennessee State Univ, Dept Biol Sci, Nashville, TN 37209 USA
[2] Tennessee State Univ, Dept Agr & Environm Sci, Nashville, TN 37203 USA
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2017年 / 26卷 / 06期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
available phosphorus; meta-analysis; nitrogen addition; phosphatase activity; phosphorus limitation; total phosphorus; RANDOM-EFFECTS MODELS; NUTRIENT LIMITATION; DEPOSITION; CARBON; PERSPECTIVE; SATURATION; DYNAMICS; BIOMASS; RATIOS; PLANTS;
D O I
10.1111/geb.12576
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim: Anthropogenic additions of nitrogen (N) are expected to drive terrestrial ecosystems toward greater phosphorus (P) limitation. However, a comprehensive understanding of how an ecosystem's P cycle responds to external N inputs remains elusive, making model predictions of the anthropogenic P limitation and its impacts largely uncertain. Location: Global. Time period: 1986-2015. Major taxa studied: Terrestrial ecosystems. Methods: We conducted a meta-analysis including 288 independent study sites from 192 articles to evaluate global patterns and controls of 10 variables associated with ecosystem P cycling under N addition. Results: Overall, N addition increased biomass in plants (134%) and litter (115%) as well as plant P content (117%), while decreasing P concentrations in plants and litter (28% and 211%, respectively). N addition did not change soil labile P or microbial P, but enhanced phosphatase activity (124%). The effects of N addition on the litter P pool and soil total P remained unclear due to significant publication biases. The response of P cycling to N addition in tropical forests was different from that in other ecosystem types. N addition did not change plant biomass or phosphatase activity in tropical forests but significantly reduced plant P and soil labile P concentrations. The shift in plant P concentration under N addition was negatively correlated with the N application rate or total N load. N-induced change in soil labile P was strongly regulated by soil pH value at the control sites, with a significant decrease of 14% only in acidic soils (pH < 5.5). Main conclusions: Our results suggest that as anthropogenic N enhancement continues in the future it could induce P limitation in terrestrial ecosystems while accelerating P cycling, particularly in tropical forests. A quantitative framework generated on the basis of this meta-analysis is useful for our understanding of ecosystem P cycling with N addition, and for incorporating the anthropogenic P limitation into ecosystem models used to analyse effects of future climate change.
引用
收藏
页码:713 / 728
页数:16
相关论文
共 50 条
  • [1] Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis
    Lu, Meng
    Yang, Yuanhe
    Luo, Yiqi
    Fang, Changming
    Zhou, Xuhui
    Chen, Jiakuan
    Yang, Xin
    Li, Bo
    NEW PHYTOLOGIST, 2011, 189 (04) : 1040 - 1050
  • [2] Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis
    Yue, Kai
    Peng, Yan
    Peng, Changhui
    Yang, Wanqin
    Peng, Xin
    Wu, Fuzhong
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis
    Kai Yue
    Yan Peng
    Changhui Peng
    Wanqin Yang
    Xin Peng
    Fuzhong Wu
    Scientific Reports, 6
  • [4] Nitrogen addition favors terrestrial ecosystem carbon sink: A global meta-analysis
    Liu, Junjie
    Dai, Licong
    Chen, Qiaoyan
    Guo, Xiaowei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 948
  • [5] Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: A meta-analysis
    Gao, Decai
    Bai, Edith
    Li, Maihe
    Zhao, Chunhong
    Yu, Kailiang
    Hagedorn, Frank
    SOIL BIOLOGY & BIOCHEMISTRY, 2020, 148
  • [6] Responses of plant phenology to nitrogen addition: a meta-analysis
    Wang, Chao
    Tang, Yujia
    OIKOS, 2019, 128 (09) : 1243 - 1253
  • [7] Nitrogen addition mediates the response of foliar stoichiometry to phosphorus addition: a meta-analysis
    Chengming You
    Changhui Peng
    Zhenfeng Xu
    Yang Liu
    Li Zhang
    Rui Yin
    Lin Liu
    Han Li
    Lixia Wang
    Sining Liu
    Bo Tan
    Paul Kardol
    Ecological Processes, 10
  • [8] Nitrogen addition mediates the response of foliar stoichiometry to phosphorus addition: a meta-analysis
    You, Chengming
    Peng, Changhui
    Xu, Zhenfeng
    Liu, Yang
    Zhang, Li
    Yin, Rui
    Liu, Lin
    Li, Han
    Wang, Lixia
    Liu, Sining
    Tan, Bo
    Kardol, Paul
    ECOLOGICAL PROCESSES, 2021, 10 (01)
  • [9] Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis
    You, Chengming
    Wu, Fuzhong
    Yang, Wanqin
    Xu, Zhenfeng
    Tan, Bo
    Yue, Kai
    Ni, Xiangyin
    ENVIRONMENTAL POLLUTION, 2018, 241 : 740 - 749
  • [10] Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis
    Han, Yunfeng
    Feng, Jiguang
    Han, Mengguang
    Zhu, Biao
    GLOBAL CHANGE BIOLOGY, 2020, 26 (12) : 7229 - 7241