Nucleation of vortices with a temperature and time-dependent Ginzburg-Landau model of superconductivity

被引:6
|
作者
Coskun, E [1 ]
Cakir, Z
Takac, P
机构
[1] Karadeniz Tech Univ, Dept Math, TR-61080 Trabzon, Turkey
[2] Univ Rostock, Dept Math, D-18055 Rostock, Germany
关键词
D O I
10.1017/S0956792502004990
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The standard scales that are used to non-dimensionalize the temperature- and time-dependent Ginzburg-Landau (TTDGL) model developed by Schmid [27], eliminate temperature-dependent parameters, and thus do not allow for superconducting phenomena due to variations in temperature. In this study, a set of new scales is presented to non-dimensionalize the TTDGL model so that the resulting dimensionless system depends upon a temperature parameter as well. Moreover, some properties of solutions to TTDGL system as a function of temperature are explored. Numerical experiments illustrating the temperature-dependency of vortex nucleation in type-II superconductors as well as the transition to the Meissner state in type-I superconductors are presented.
引用
收藏
页码:111 / 127
页数:17
相关论文
共 50 条
  • [1] TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS OF SUPERCONDUCTIVITY
    TANG, Q
    WANG, S
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (3-4) : 139 - 166
  • [2] Cauchy problem for the time-dependent Ginzburg-Landau model of superconductivity
    Rodriguez-Bernal, A
    Wang, B
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 1383 - 1404
  • [3] A note on the time-dependent Ginzburg-Landau model for superconductivity in Rn
    Fan, Jishan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [4] Vortices in the Ginzburg-Landau model of superconductivity
    Serfaty, S
    EUROPEAN CONGRESS OF MATHEMATICS, 2005, : 837 - 850
  • [5] NUCLEATION IN A TIME-DEPENDENT GINZBURG-LANDAU MODEL - A NUMERICAL STUDY
    VALLS, OT
    MAZENKO, GF
    PHYSICAL REVIEW B, 1990, 42 (10): : 6614 - 6622
  • [6] A regularity criterion to the time-dependent Ginzburg-Landau model for superconductivity in Rn
    Fan, Jishan
    Zhou, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [7] Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity
    Rodriguez-Bernal, A
    Wang, BX
    Willie, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (18) : 1647 - 1669
  • [8] Time-dependent Ginzburg-Landau approach and its application to superconductivity
    Zagrodzinski, JA
    Nikiciuk, T
    Abal'osheva, IS
    Lewandowski, SJ
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2003, 16 (08): : 936 - 940
  • [9] Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity
    Gunter, DO
    Kaper, HG
    Leaf, GK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06): : 1943 - 1958
  • [10] Lp solutions to the time-dependent Ginzburg-Landau equations of superconductivity
    Wang, Shouhong
    Zhan, Mei-Qin
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (06): : 661 - 677