Simulations of nonradiative processes in semiconductor nanocrystals

被引:15
|
作者
Jasrasaria, Dipti [1 ]
Weinberg, Daniel [1 ,2 ]
Philbin, John P. [3 ]
Rabani, Eran [1 ,2 ,4 ]
机构
[1] Univ Calif, Dept Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Tel Aviv Univ, Raymond & Beverly Sackler Ctr Computat Mol & Mat S, IL-69978 Tel Aviv, Israel
来源
JOURNAL OF CHEMICAL PHYSICS | 2022年 / 157卷 / 02期
关键词
CDSE QUANTUM DOTS; BIEXCITON AUGER RECOMBINATION; ELECTRON-HOLE EXCITATIONS; SIZE DEPENDENCE; PSEUDOPOTENTIAL CALCULATIONS; CARRIER RELAXATION; SHELL-THICKNESS; MULTIEXCITON GENERATION; FILTER-DIAGONALIZATION; TEMPERATURE-DEPENDENCE;
D O I
10.1063/5.0095897
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The description of carrier dynamics in spatially confined semiconductor nanocrystals (NCs), which have enhanced electron-hole and exciton-phonon interactions, is a great challenge for modern computational science. These NCs typically contain thousands of atoms and tens of thousands of valence electrons with discrete spectra at low excitation energies, similar to atoms and molecules, that converge to the continuum bulk limit at higher energies. Computational methods developed for molecules are limited to very small nanoclusters, and methods for bulk systems with periodic boundary conditions are not suitable due to the lack of translational symmetry in NCs. This perspective focuses on our recent efforts in developing a unified atomistic model based on the semiempirical pseudopotential approach, which is parameterized by first-principle calculations and validated against experimental measurements, to describe two of the main nonradiative relaxation processes of quantum confined excitons: exciton cooling and Auger recombination. We focus on the description of both electron-hole and exciton-phonon interactions in our approach and discuss the role of size, shape, and interfacing on the electronic properties and dynamics for II-VI and III-V semiconductor NCs.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Toward the Control of Nonradiative Processes in Semiconductor Nanocrystals
    Cassette, Elsa
    Mirkovic, Tihana
    Scholes, Gregory D.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (12): : 2091 - 2093
  • [2] Non-blinking semiconductor nanocrystals: Suppression of nonradiative Auger processes
    Efros, Alexander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [3] Erratum: "Simulations of nonradiative processes in semiconductor nanocrystals" [J. Chem. Phys. 157, 020901 (2022)]
    Jasrasaria, Dipti
    Weinberg, Daniel
    Philbin, John P.
    Rabani, Eran
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (16):
  • [4] Nonradiative Auger Recombination in Semiconductor Nanocrystals
    Vaxenburg, Roman
    Rodina, Anna
    Shabaev, Andrew
    Lifshitz, Efrat
    Efros, Alexander L.
    NANO LETTERS, 2015, 15 (03) : 2092 - 2098
  • [5] Theory of radiative and nonradiative transitions for semiconductor nanocrystals
    Lannoo, M
    Delerue, C
    Allan, G
    JOURNAL OF LUMINESCENCE, 1996, 70 : 170 - 184
  • [6] Identification of Nonradiative Relaxation Processes in Alloy Nanocrystals
    Bera, Rajesh
    Medda, Anusri
    Dutta, Avisek
    Sain, Sumanta
    Patra, Amitava
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (34): : 18823 - 18833
  • [7] Rapid Trapping as the Origin of Nonradiative Recombination in Semiconductor Nanocrystals
    Pevere, Federico
    Sangghaleh, Fatemeh
    Bruhn, Benjamin
    Sychugov, Ilya
    Linnros, Jan
    ACS PHOTONICS, 2018, 5 (08): : 2990 - 2996
  • [8] Radiative and nonradiative rate fluctuations of single colloidal semiconductor nanocrystals
    Biebricher, A
    Sauer, M
    Tinnefeld, P
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (11): : 5174 - 5178
  • [9] Radiative versus nonradiative optical processes in PbS nanocrystals
    Dantas, N. O.
    de Paula, P. M. N.
    Silva, R. S.
    Lopez-Richard, V.
    Marques, G. E.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (02)
  • [10] Fundamental processes in semiconductor nanocrystals
    Lifshitz, Efrat
    Siebbeles, Laurens D. A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (47) : 25677 - 25678