Adaptive denoising for simplified signal-dependent random noise model in optoelectronic detector

被引:0
|
作者
Zhang, Yu [1 ,2 ]
Wang, Weiping [2 ]
Wang, Guangyi [1 ,2 ]
Xu, Jiangtao [3 ]
机构
[1] Hangzhou Dianzi Univ, Key Lab RF Circuits & Syst, Minist Educ, Hangzhou, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Elect & Informat, Hangzhou, Zhejiang, Peoples R China
[3] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
adaptive denoising; Maclaurin formula; simplified signal-dependent random noise; FILTER; IMAGES;
D O I
10.1117/1.OE.56.5.053105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Existing denoising algorithms based on a simplified signal-dependent noise model are valid under the assumption of the predefined parameters. Consequently, these methods fail if the predefined conditions are not satisfied. An adaptive method for eliminating random noise from the simplified signal-dependent noise model is presented in this paper. A linear mapping function between multiplicative noise and noiseless image data is established using the Maclaurin formula. Through demonstrations of the cross-correlation between random variables and independent random variable functions, the mapping function between the variances of multiplicative noise and noiseless image data is acquired. Accordingly, the adaptive denoising model of simplified signal-dependent noise in the wavelet domain is built. The experimental results confirm that the proposed method outperforms conventional ones. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Simplified noise model parameter estimation for signal-dependent noise
    Jeong, Bo Gyu
    Kim, Byoung Chul
    Moon, Yong Ho
    Eom, Il Kyu
    [J]. SIGNAL PROCESSING, 2014, 96 : 266 - 273
  • [2] Image denoising for signal-dependent noise
    Hirakawa, K
    Parks, TW
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 29 - 32
  • [3] Wavelet and multirate denoising for signal-dependent noise
    Aiazzi, B
    Alparone, L
    Baronti, S
    Garzelli, A
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 843 - 852
  • [4] Deep Signal-Dependent Denoising Noise Algorithm
    Zhao, Lanfei
    Li, Shijun
    Wang, Jun
    [J]. ELECTRONICS, 2023, 12 (05)
  • [5] AN IMAGE FUSION APPROACH FOR DENOISING SIGNAL-DEPENDENT NOISE
    Kumar, Mrityunjay
    Miller, Rodney L.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1438 - 1441
  • [6] ADAPTIVE POINT ESTIMATION IN SIGNAL-DEPENDENT NOISE
    KASTURI, R
    WALKUP, JF
    KRILE, TF
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (03): : 352 - 359
  • [7] DENOISING EFFICIENCY FOR MULTICHANNEL IMAGES CORRUPTED BY SIGNAL-DEPENDENT NOISE
    Lukin, V. V.
    Abramov, S. K.
    Kozhemiakin, R. A.
    Uss, M. L.
    Vozel, B.
    Chehdi, K.
    [J]. 2013 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2013, : 340 - 342
  • [8] ADAPTIVE NOISE SMOOTHING FILTER FOR IMAGES WITH SIGNAL-DEPENDENT NOISE
    KUAN, DT
    SAWCHUK, AA
    STRAND, TC
    CHAVEL, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (02) : 165 - 177
  • [9] ADAPTIVE IMAGE ESTIMATION IN THE PRESENCE OF SIGNAL-DEPENDENT NOISE
    KASTURI, R
    WALKUP, JF
    KRILE, TF
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1794 - 1794
  • [10] LOCALLY ADAPTIVE IMAGE-RESTORATION IN THE ABSENCE OF A MODEL FOR SIGNAL-DEPENDENT NOISE
    ARSENAULT, HH
    LEVESQUE, M
    [J]. OPTICS LETTERS, 1986, 11 (04) : 193 - 195