We study how threshold models and neocortical neurons transfer temporal and interneuronal input correlations to correlations of spikes. In both, we find that the low common input regime is governed by firing rate dependent spike correlations which are sensitive to the detailed structure of input correlation functions. In the high common input regime, the spike correlations are largely insensitive to the firing rate and exhibit a universal peak shape. We further show that pairs with different firing rates driven by common inputs in general exhibit asymmetric spike correlations.