The dual cone of sums of non-negative circuit polynomials

被引:1
|
作者
Dressler, Mareike [1 ]
Naumann, Helen [2 ]
Theobald, Thorsten [2 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Goethe Univ, FB 12 Inst Math, Postfach 11 19 32, D-60054 Frankfurt, Germany
关键词
Positive polynomials; non-negative circuit polynomials; dual cone; polynomial optimization;
D O I
10.1515/advgeom-2020-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a non-empty, finite subset A subset of N-0(n) let C-sonc(A) is an element of R[x(1),..., x(n)] be the cone of sums of non-negative circuit polynomials with support A. We derive a representation of the dual cone (C-sonc(A))* and deduce an optimality criterion for sums of non-negative circuit polynomials in polynomial optimization.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 50 条
  • [1] Univalent polynomials and non-negative trigonometric sums
    Gluchoff, A
    Hartmann, F
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (06): : 508 - 522
  • [2] PROPERTIES OF THE CONE OF NON-NEGATIVE POLYNOMIALS AND DUALITY
    Hrdina, J.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (03): : 225 - 239
  • [3] POLYNOMIALS NON-NEGATIVE ON A STRIP
    Marshall, M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (05) : 1559 - 1567
  • [4] Distinguished representations of non-negative polynomials
    Scheiderer, C
    JOURNAL OF ALGEBRA, 2005, 289 (02) : 558 - 573
  • [5] STUDY OF NON-NEGATIVE EXPONENTIAL POLYNOMIALS
    Kounchev, Ognyan
    Render, Hermann
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (08): : 1029 - 1036
  • [6] Symmetric Non-Negative Forms and Sums of Squares
    Grigoriy Blekherman
    Cordian Riener
    Discrete & Computational Geometry, 2021, 65 : 764 - 799
  • [7] Solution of a problem on non-negative subset sums
    Engel, Konrad
    Nardi, Caterina
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1253 - 1256
  • [8] Incomplete sums of non-negative multiplicative functions
    Greaves, G
    ACTA ARITHMETICA, 2005, 118 (04) : 337 - 357
  • [9] TRIGONOMETRIC SERIES WITH NON-NEGATIVE PARTIAL SUMS
    CHIDAMBARASWAMY, J
    SHAH, SM
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1968, 229 : 163 - +
  • [10] Symmetric Non-Negative Forms and Sums of Squares
    Blekherman, Grigoriy
    Riener, Cordian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (03) : 764 - 799