On the periodicity of two rational recursive sequences

被引:0
|
作者
Zhang, DC [1 ]
Shi, B [1 ]
Yang, SR [1 ]
Gai, MJ [1 ]
机构
[1] Naval Aeronaut Engn Inst, Dept Basic Sci, Shandong 264001, Peoples R China
来源
关键词
rational recursive sequence; difference equations; periodic cycles; period;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the rational recursive sequence: x(n+1) = a(n)/x(n-1) for n = 0, 1, 2, ... and x(n+1) = b(n)x(n)/x(n-1) for n = 0,1, 2, ..., and obtain some interesting results on periodic cycles about the above two difference equations.
引用
收藏
页码:631 / 649
页数:19
相关论文
共 50 条
  • [1] Solutions and Periodicity of a Rational Recursive Sequences of Order Five
    Elsayed, E. M.
    Ibrahim, T. F.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 95 - 112
  • [2] Solutions and Periodicity of a Rational Recursive Sequences of Order Five
    E. M. Elsayed
    T. F. Ibrahim
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 95 - 112
  • [3] Two rational recursive sequences
    Li, XY
    Zhu, DM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (10-11) : 1487 - 1494
  • [4] On the periodicity of recursive sequences
    Sivak, AG
    ADVANCES IN DIFFERENCE EQUATIONS-BOOK, 1997, : 559 - 566
  • [5] ON THE PERIODICITY OF CERTAIN RECURSIVE SEQUENCES
    McGuire, Trevor
    FIBONACCI QUARTERLY, 2008, 46-47 (04): : 350 - 355
  • [6] ON RATIONAL RECURSIVE SEQUENCES
    KOCIC, VL
    LADAS, G
    RODRIGUES, IW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (01) : 127 - 157
  • [7] Periodicity and attractivity for a rational recursive sequence
    Zhang L.
    Zhang G.
    Liu H.
    Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 191 - 201
  • [8] GENERALIZATIONS OF THE PERIODICITY OF CERTAIN RECURSIVE SEQUENCES
    McGuire, Trevor
    FIBONACCI QUARTERLY, 2010, 48 (02): : 175 - 181
  • [9] Behavior of a rational recursive sequences
    Elsayed, Elsayed M. Mohamed
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (01): : 27 - 42
  • [10] General form of some rational recursive sequences
    Liao, Maoxin
    Tang, Xianhua
    Xu, Changjin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 360 - 364