Bochner-Kahler and Bach flat manifolds

被引:1
|
作者
Ghosh, Amalendu [1 ]
Sharma, Ramesh [2 ]
机构
[1] Chandernagore Coll, Dept Math, Chandannagar 712136, W Bengal, India
[2] Univ New Haven, Dept Math, West Haven, CT 06516 USA
关键词
Bochner-Kahler manifold; Cotton tensor; Bach flat; Holomorphic sectional curvature; Infinitesimal harmonic transformation; PARALLEL; SPACES;
D O I
10.1007/s00013-019-01356-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have classified Bochner-Kahler manifolds of real dimension which are also Bach flat. In the 4-dimensional case, we have shown that if the scalar curvature is harmonic, then it is constant. Finally, we show that the gradient of scalar curvature of any Bochner-Kahler manifold is an infinitesimal harmonic transformation, and if it is conformal, then the scalar curvature is constant.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 50 条
  • [1] Nullity index of Bochner-Kahler manifolds
    Calvaruso, G.
    [J]. NOTE DI MATEMATICA, 2009, 29 (02): : 115 - 122
  • [2] Warped product kahler manifolds and Bochner-Kahler metrics
    Ganchev, G.
    Mihova, V.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (07) : 803 - 824
  • [3] Bochner-Kahler metrics
    Bryant, RL
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) : 623 - 715
  • [4] On Bochner flat almost Kahler manifolds
    Kassabov, Ognian
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (03): : 247 - 256
  • [5] On Bochner Flat Kahler B-Manifolds
    Bejan, Cornelia-Livia
    Nakova, Galia
    Blaga, Adara M.
    [J]. AXIOMS, 2023, 12 (04)
  • [6] Bochner-Kähler and Bach flat manifolds
    Amalendu Ghosh
    Ramesh Sharma
    [J]. Archiv der Mathematik, 2019, 113 : 551 - 560
  • [7] SOME SUBMERSIONS OF EXTRINSIC HYPERSPHERES OF A BOCHNER-KAHLER MANIFOLD
    Vilcu, Gabriel Eduard
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2005, 54 (03) : 343 - 351
  • [8] Hamiltonian 2-forms in Kahler geometry, IV - Weakly Bochner-flat Kahler manifolds
    Apostolov, Vestislav
    Calderbank, David M. J.
    Gauduchon, Paul
    Tonnesen-Friedman, Christina W.
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (01) : 91 - 126
  • [9] Heisenberg, spherical CR-geometry and bochner flat locally conformal Kahler manifolds
    Kamishima, Yoshinobu
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1089 - 1116
  • [10] Kahler flat manifolds
    Dekimpe, Karel
    Halenda, Marek
    Szczepanski, Andrzej
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (02) : 363 - 377